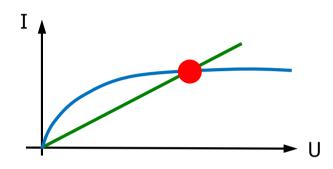


References

(only some very basic things)

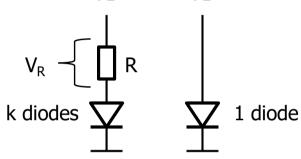
P. Fischer, Heidelberg University


Advanced Analogue Building Blocks: References

© P. Fischer, ziti, Uni Heidelberg, page 1

- To bias chips, we need a reference voltage or current
- This should be 'constant', i.e. mostly independent of
 - Process variations (Thresholds, resistor values,..)
 - Power Supply Voltage
 - Temperature
- 'PVT independent'
- To asses quality, study
 - Power supply rejection (rel. change of V_{REF} / rel. change of VDD)
 - Temperature Rejection (rel. change of V_{REF} per degree K)

- Common principle:
 - Look for two different I(U) dependencies and find the intersection

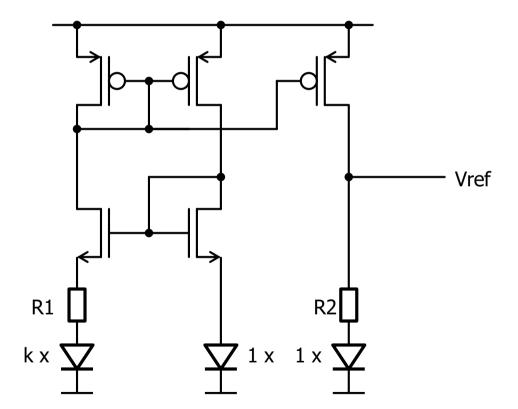

There are normally several (2) intersections!
 → Need startup circuit to avoid wrong operation point

- Most component properties depend on temperature
- To obtain temperature independence, add two quantities with opposite temperature dependency
 - PTAT = Proportional To Absolute Temp.
 - NTAT = Negative To ..

ruprecht-karls-UNIVERSITÄT HEIDELBERG

Simple Example

- Diode current $I_D \sim I_S \operatorname{Exp}(V_D/U_{th}) \longrightarrow V_D = U_{th} \ln(I_D/I_S)$
 - U_{TH} = kT/q ~25mV @ RT
 - I_S depends on diode geometry etc. I_S also depends on temperature!
- Consider circuit shown right.
 Assume V1 is identical left/right


• V_R + $U_{th} \ln(I_D/k I_S)$ = V1 = $U_{th} \ln(I_D/I_S)$

• $V_R = U_{th} \ln (k)$ independent of diode parameters!

BUT: U_{th} depends on temperature...

Vref = R2/R1 U_{th} In(k) +U_{th} In(ID/IS) PTAT NTAT

© P. Fischer, ziti, Uni Heidelberg, page 6