References

(only some very basic things)

P. Fischer, Heidelberg University

Goal

- To bias chips, we need a reference voltage or current
- This should be 'constant', i.e. mostly independent of
- Process variations (Thresholds, resistor values,..)
- Power Supply Voltage
- Temperature
- 'PVT independent'
- To asses quality, study
- Power supply rejection (rel. change of $\mathrm{V}_{\mathrm{REF}}$ / rel. change of VDD)
- Temperature Rejection (rel. change of $\mathrm{V}_{\text {REF }}$ per degree K)

Implementation

- Common principle:
- Look for two different I(U) dependencies and find the intersection

- There are normally several (2) intersections!
\rightarrow Need startup circuit to avoid wrong operation point

Getting rid of Temperature Dependence

- Most component properties depend on temperature
- To obtain temperature independence, add two quantities with opposite temperature dependency
- PTAT = Proportional To Absolute Temp.
- NTAT = Negative To ..

Simple Example

- Diode current $\mathrm{I}_{\mathrm{D}} \sim \mathrm{I}_{\mathrm{S}} \operatorname{Exp}\left(\mathrm{V}_{\mathrm{D}} / \mathrm{U}_{\mathrm{th}}\right) \quad \rightarrow \mathrm{V}_{\mathrm{D}}=\mathrm{U}_{\mathrm{th}} \ln \left(\mathrm{I}_{\mathrm{D}} / \mathrm{I}_{\mathrm{S}}\right)$
- $\mathrm{U}_{\mathrm{TH}}=\mathrm{kT} / \mathrm{q} \sim 25 \mathrm{mV}$ @ RT
- I_{S} depends on diode geometry etc.
I_{S} also depends on temperature!
- Consider circuit shown right. Assume V1 is identical left/right
- $\mathrm{V}_{\mathrm{R}}+\mathrm{U}_{\text {th }} \ln \left(\mathrm{I}_{\mathrm{D}} / \mathrm{k} \mathrm{I}_{\mathrm{S}}\right)=\mathrm{V} 1=\mathrm{U}_{\mathrm{th}} \ln \left(\mathrm{I}_{\mathrm{D}} / I_{\mathrm{S}}\right)$

V1

$\rightarrow V_{R}=U_{t h} \ln \left(I_{D} / I_{S}\right)-U_{t h} \ln \left(I_{D} / k I_{S}\right)$

$$
=U_{\text {th }}\left[\ln \left(I_{D} / I_{S}\right)+\ln \left(k I_{S} I_{D}\right)\right]
$$

- $\mathrm{V}_{\mathrm{R}} \quad=\mathrm{U}_{\mathrm{th}} \ln (\mathrm{k})$ independent of diode parameters!
- BUT: U_{th} depends on temperature...

Implementation

- Vref $=\mathrm{R} 2 / \mathrm{R} 1 \mathrm{U}_{\mathrm{th}} \ln (\mathrm{k})+\mathrm{U}_{\mathrm{th}} \ln (\mathrm{ID} / \mathrm{IS})$ PTAT NTAT

