Low swing differential logic for mixed signal applications

Peter Fischer^{*}, University of Mannheim, Germany Edgar Kraft, University of Bonn, Germany

Overview

- **Obvious advantages** of low swing, differential **logic** with constant current operation are:
 - low swing

 \Rightarrow small injected cross talk

 \Rightarrow **compensation** of spurious injections

- **differential** swings
- **constant current** operation (also during transients!)
- \Rightarrow **no spikes** on supply and ground (no short circuit current)
- This makes it very attractive for low noise mixed mode FE chips (e.g. pixel chips)

Possible drawbacks are

- dc power consumption may be excessive. However, **speed requirements** in HEP are often **modest** compared to possibilities of DSM chip technologies!
 - \odot It turns out that adequate speed can be achieved with few $\mu W/Gate.$
- layout area may be increased due to increased circuit complexity.
 - © complex functions can be implemented with less devices than in CMOS.
 - © if radhard layout imposes annular NMOS, the small number of NMOS in differential logic is advantageous!
 - © the many metal layers available in DSM technologies make routing of twice the number of signals fairly easy.
- **speed** depends strongly on load capacitance. Selectively adapting the bias current to the load is difficult because this changes the signal levels when standard load circuits are used.
 - © a novel load circuit alleviates this problem.

• The goal of this work is

- to design a **prototype chip** in 0.25µm technology using radiation hard layout rules
- to **study the feasbility** of CML for moderate speed applications
- in particular **area**, **speed** and **power dissipation** of typical circuits
- and to verify operation of a **novel load circuit** which allows easy control of the signal swing.

CML Operation

Ideal Load Circuit

- Differential current mode logic (CML) steers a constant bias current I_{bias} into two load circuits which generate the low voltage swings by $I \rightarrow U$ conversion
- The DC levels must be matched to the common mode input range of the switch block
- Typical loads have linear U/I characteristics or use (pre-biased) diode connected MOS
- Their problem: the swing depends strongly on I_{bias} so that matching to the load capacitance is difficult. This makes circuit design tedious.

- An 'ideal' load has the following characteristic:
- The V_{hi}-level is fixed by the maximum possible input voltage to the switch block (~VDD-V_{TP}-V_{DSat})
- The V_{lo}-level is fixed by the voltage swing required to 'fully' switch current in the switch block. For MOS operated in weak inversion, this is below 200mV!
- The plateau at ½ I_{bias} guarantees equal rise and fall times (C_{load} is charged/discharged with ±½ I_{bias})

Proposed Load Circuit

- The proposed circuit approximates the 'ideal' characteristic by a parallel connection of:
 - an NMOS operated as a current source with adjustable source voltage VSS
 - a diode connected NMOS (other 'steep' devices like pn-diodes could replace the second NMOS)
- Due to the steep characteristic of the MOS diode (exponential in weak inversion), V_{hi} increases only slowly with I_{bias}
- the differential swing can be easily adjusted through VSS

Signal Levels and Supply Voltage

- The Low level is constant = VSS = 0.2V
- The High level depends only logarithmically on I_{bias}: A 10 x higher bias increases the swing by ~ 100mV. A typical value is V_{hi} = ~400mV, i.e. a swing of ~200mV.
- Logic can be therefore be operated at a supply voltage of only VDD = 1.2V

9th Pisa Meeting on Advanced Detectors, Elba, 25-31.5.2003

 Only two different gates implement all possible functions of two variables. (Inversion of signals is done by swapping differential signals ⇒ OR and AND gates are equivalent)

- Complex functions can be integrated into one block. This saves transistors for current source and load circuits
- With annular NMOS devices (for radiation hardness), differential gates can even be smaller than CMOS!

Function	CM	OS	Differential		
	PMOS	NMOS	PMOS	NMOS	
and2	2	2	4+1	4	
and3	3	3	6+1	4	
xor2	5(3)	5(3)	6+1	4	
mux2	3	3	6+1	4	
latch	4	4	6+1	4	
Latch w. input MUX	7	7	10+1	4	

Propagation Delay

Clocking Frequency

- Propagation delay of an inverter has been measured on a test chip.
- Power-Delay product is nearly constant because signal swing is faily independent of I_{bias}.

delay and power-delay-product of inverter

• A 8 bit synchronous counter operates at

- 8 MHz if operated at 35µW
- 15 MHz if operated at 81µW
- Maximum clocking frequency of a 32 bit long shift register (with parallel load) has been measured on a test chip:

Max. clocking speed of shift register

Peter Fischer, University of Mannheim, Germany

Design study: 16 bit counter

- A fully differential, fully static 16 bit ripple counter including a parallel readout scheme has been implemented
- Layout area is 50μm × 50μm (in a 0.25μm technology using annular NMOS devices, using 3M layers)
- Expected size for non-radhard layout is $50 \mu m \times 35 \mu m$
- The maximum clocking speed depends on the dc power consumption
- A counter operated at a ~6.5µW operates up to 20 MHz
- If it disspiates ~35µW, it operates up to 80 MHz

RO	RO	RO	RO	RO	RO	RO	RO		
FF	FF	FF	FF	FF	FF	FF	FF		
NMOS load circuits									
FF	FF	FF	FF	FF	FF	FF	FF		
RO	RO	RO	RO	RO	RO	RO	RO		

