FOR FUN:
 Higher Order Filters

Reminder: One Low Pass

- (For simplicity, we use fixed values for R and C , often $1 \Omega / \mathrm{F}$)

$$
H_{L P 1}\left[s_{-}\right]=\frac{1}{1+s}
$$

- Mathematically, $\mathrm{H}_{\mathrm{LP} 1}[\mathrm{~s}]$ has a POLE at $\mathrm{s}=-1$.
- This can be illustrated in the COMPLEX s-Plane:

- This particular pole is real, i.e. it lies on the real axis

Reminder: Cascaded Low Pass Stages

- If we cascade N stages with buffers, we get

$$
H_{\text {LPN }}\left[s_{-}\right]=\frac{1}{(1+s)^{N}}
$$

- $\mathrm{H}_{\text {LPN }}[\mathrm{s}]$ has a N -fold POLE at the same location $\mathrm{s}=-1$.

Two Unbuffered Low Pass Stages

- If we cascade two stages without buffer, we get

$$
H_{\text {LPCasc } \mid}[s]=\frac{1}{1+3 s+s^{2}}
$$

- We now have two different (still real) poles:

(Their locations depend on the impedance of the second stage)

(Pole Location for Previous Case)

- If we modify R, C of the second stage, keeping $R C=1$, we get

$$
H\left[s_{-}\right]=\frac{x}{s+x+2 s x+s^{2} x}
$$

- The poles are at $P_{1,2}[x]=\frac{-1-2 x \pm \sqrt{1+4 x}}{2 x}$

(when x is large, the $2^{\text {nd }}$ LP does not load the $1^{\text {st }}$)

An Active Filter

- Now consider the following filter ('Sallen and Key')

$$
\begin{aligned}
& \text { Ee1 }=\frac{v i n-v 1}{1}=\frac{v 1-\text { vout }}{1}+(v 1-\text { vout }) ~ s 10 ; \\
& \text { Eq2 }=\frac{v 1 \text { - out }}{1}=\text { vouts } \frac{1}{10} \text {; } \\
& H[s]=\frac{5}{5+s+5 s^{2}}
\end{aligned}
$$

- This transfer function has two COMPLEX (conjugate) poles:

Bode Plots of 2nd Order Filters

- The active filter has an overshoot (for the values chosen)
- This is typical for complex conjugate poles

Making Steep Filters

A Steep Low Pass Filter

- We want to design a higher ($\left.\mathrm{N}^{\text {th }}\right)$ order low-pass filter which drops suddenly from pass band to stop band.
- We know that we roll off with slope -N at the end (for $s \rightarrow \infty$).

- Simple cascaded LPs attenuate by $2^{-N / 2}$ at the corner
- Can this be improved?

Choosing the Poles

- The Idea: Use complex poles and adjust them 'somehow'
- 'Butterworth' arranges poles on circle. Here: $7^{\text {th }}$ order.

- Wow! Butterworth attenuation at the corner is only -3dB!

(Decomposing the Butterworth Filter)

- For $\mathrm{N}=7$:
- One real pole ($1^{\text {st }}$ order, blue)
- 3 conjugate poles ($2^{\text {nd }}$ order)

Even Steeper?

- Remember: For large frequencies, we will always roll off with $\mathrm{s}^{-\mathrm{N}}$ (the order of the filter, i.e. the number of caps)
- But: The 'peaking' for complex poles provides steeper response close to the bandwidth:

Placing the Poles...

- There are obviously MANY possibilities to place the poles...
- Desired filter properties are for instance
- Flatness/ripple of the response in the pass band
- Steepness of the drop
- Ripple in the stop band
- Response to step signals (overshoots)
- Phase behavior
- Four main types have evolved:
- Butterworth: Flat pass band
- Bessel: No phase shift, no overshoot
- Chebyshev: Steeper rolloff, but ripple in pass band
- Elliptic: Even steeper rolloff, but ripple in pass and stop band

The Chebyshev Filter (7 ${ }^{\text {th }}$ order)

Pole location for a $7^{\text {th }}$ order Chebyshev filter (there are others, depending on the desired pass band ripple)

