

Exercise: (More) Filters

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

Exercise 1

• Analyze the following circuit (simulation & calculation!):

- What is the transfer function?
- At which frequencies are the 'pole' in the denominator and the 'zero' in the nominator?
- What are gain and phase for s → 0 and for s→∞? Why?
- What happens for $C_1 \to 0$, for $R \to 0$, for $R \to \infty$? Reasonable?
- Simulate the circuit for $C_1 = C_2 = 10 pF$ and $R = 10 k\Omega$. Plot gain and phase!
- Chose values so that the circuit attenuates to 1/10 at high frequencies.
- For fun: At which frequency is phase shift maximal?

- Two possibilities:
 - 1. Treat circuit as voltage divider with C_1 // R and C_2
 - 2. Use Kirchhoff's law @ node vout

- Voltage divider:
 - For any Z_1 , Z_2 , we have $v = v_{out}/v_{in} = Z_2 / (Z_1+Z_2)$
 - With $1/Z_1 = 1/R + s C_1$ and $1/Z_2 = s C_2$:

$$v = \frac{1 + C_1 Rs}{1 + (C_1 + C_2) Rs}$$

- Kirchhoff:
 - Solve $(v_{in}-v_{out})/R+(v_{in}-v_{out})$ sC₁ = v_{out} s C₂ for v_{out}

Limits

$$v = \frac{1 + C_1 Rs}{1 + (C_1 + C_2) Rs}$$

- $v=rac{1+C_1Rs}{1+(C_1+C_2)Rs}$ s ightarrow 0: caps are gone. v is just 1. No phase shift. s ightarrow ightarrow s ightarrow ightarrow can be neglected. frequency dependencies cancel. This is just a capacitive voltage divider. No phase shift
 - Phase shift:

gain = Sqrt[(HH /. $s \rightarrow i\omega$) (HH /. $s \rightarrow -i\omega$)] // FullSimplify

$$\sqrt{\frac{1 + C1^2 R^2 \omega^2}{1 + (C1 + C2)^2 R^2 \omega^2}}$$

$$phase = -\frac{180}{\pi} \, ArcTan \Big[\frac{Im \left[ComplexExpand \left[HH \ /. \ S \rightarrow \dot{\textbf{1}} \ \omega \right] \right]}{Re \left[ComplexExpand \left[HH \ /. \ S \rightarrow \dot{\textbf{1}} \ \omega \right] \right]} \Big] \ // \ FullSimplify$$

$$\frac{180\, \mathrm{ArcTan} \left[\, \frac{\mathrm{C2\,R\,\omega}}{_{1+\mathrm{C1\,\,(C1+C2)\,\,R^2\,\omega^2}} \, \right]}{\pi}$$

PhaseDeriv = D[phase, ω] // FullSimplify

$$\frac{180 \text{ C2 R } \left(1-\text{C1 } \left(\text{C1}+\text{C2}\right) \text{ R}^2 \text{ } \omega^2\right)}{\pi + \left(2 \text{ C1}^2+2 \text{ C1 } \text{C2}+\text{C2}^2\right) \pi \text{ R}^2 \text{ } \omega^2+\text{C1}^2 \text{ } \left(\text{C1}+\text{C2}\right)^2 \pi \text{ R}^4 \text{ } \omega^4}$$

 ω max = ω /. Solve[PhaseDeriv == 0, ω] // Last // FullSimplify

$$\frac{1}{\sqrt{\text{C1 (C1 + C2) R}^2}}$$

Exercise 2: Cascaded Stages

Consider the following two stage circuit (again):

- The triangle is a (voltage) buffer with infinite input impedance (it does not load the first low-pass) and zero output impedance.
 From the analogLib, use vcvs (voltage controlled voltage source)
- What transfer function do you expect?
- Simulate the circuit!
- Simulate in parallel a version without buffer. Where are differences ?
- Use a much larger R and correspondingly smaller C in the second low pass.
- Now calculate the exact transfer function without buffer

Page5

Transfer Function with buffers

HH1 [
$$s_{-}$$
] = $\left(\frac{1}{1+sRC}\right)^{2}$; (* with buffers: square of s gain1[ω_{-}] = Sqrt[HH1[$i\omega$] HH1[$-i\omega$]] // FullSimplify
$$\frac{1}{1+C^{2}R^{2}\omega^{2}}$$

Without Buffers:

EQ1 =
$$\frac{\text{vin} - \text{v1}}{\text{R1}}$$
 == v1 s C1 + $\frac{\text{v1} - \text{vout}}{\text{R2}}$; (* node v1 *)
EQ2 = $\frac{\text{v1} - \text{vout}}{\text{R2}}$ == vout s C2; (* output node *)
Eliminate[{EQ1, EQ2}, v1] // Simplify
vin == (1 + C2 (R1 + R2) s + C1 R1 s (1 + C2 R2 s)) vout
HH2 [s_] = $\frac{\text{vout}}{\text{vin}}$ /. Solve[%, vout] // First

$$\frac{1}{1 + \text{C1 R1 s} + \text{C2 R1 s} + \text{C2 R2 s} + \text{C1 C2 R1 R2 s}^2}$$

- Bode Plot for different RC combinations in second stage:
 - We note two poles.
 - They coincide, when the second low pass does not load the first

■ Plot the poles as a function of f where $R_2 = R_1 f$, $C_2 = C_1 / f$, so that $R_2C_2 = R_1C_1$:

p1, p2 10 10 100 1000 f

Exercise 3: Wien Bridge / Oscillator

- Consider this circuit:
- What is the transfer function?
- What is the magnitude at the center frequency?
- What is the Phase at the center frequency?
- Simulate the circuit for R=1k C=1n

- You can use this 'Wien Bridge' to make an oscillator:
 - Amplify v_{out} by exactly 3 (vcvs!) and feed the signal back to v_{in}.
 - Set an initial condition of 1V (parameter!) for the lower C and start a transient simulation.
 - How does this work?
 - What happens if the gain is not exactly 3?

Initial condition

Temperature coefficient 1

Itermezzo: Wien Oszillator

- Wien bridge: Max Wien (1891)
- An Oscillator using a *light bulb* to stabilize gain (leading to with very low distortion) is patented 1939 by William Hewlett and David Packard (Stanford University)
- Founders of Hewlett Packard (HP)
- Their first product: HP 200A 'Audio Oscillator'

Schematic Diagram (HP 200 B)

Inside..

Discrete circuit versions

- The problem is to stabilize the gain to exactly 3
- This is achieved by a regulation loop which monitors the output amplitude by some means

$$B[s] = \frac{C R s}{1 + 3 C R s + C^2 R^2 s^2}$$

- Centre frequency is at ω_0 = 1/RC.
 - Gain there is 1/3. Phase is 0
 - Note that H becomes real valued at s=i ω_0
- Oscillator:

Exercise 5: Low Pass & High Pass

- Plot (on a paper) the Bode diagram for a low pass filter
 - Calculate the amplitude at the corner frequency ω_C =1/(RC)
 - Calculate the phase for $\omega = 0$, $\omega = \omega_C$, $\omega \to \infty$
- Simulate this circuit (using an ac sweep)
 - Do not forget to set the 'ac magnitude' to 1
 - Change the vertical scale to 'log'
 - Plot gain in dB and phase:
 Results → Direct Plot → Gain and Phase → Select output and the Input
 - Check the numerical value of the corner frequency
- Add a high pass and plot the two outputs simultaneously