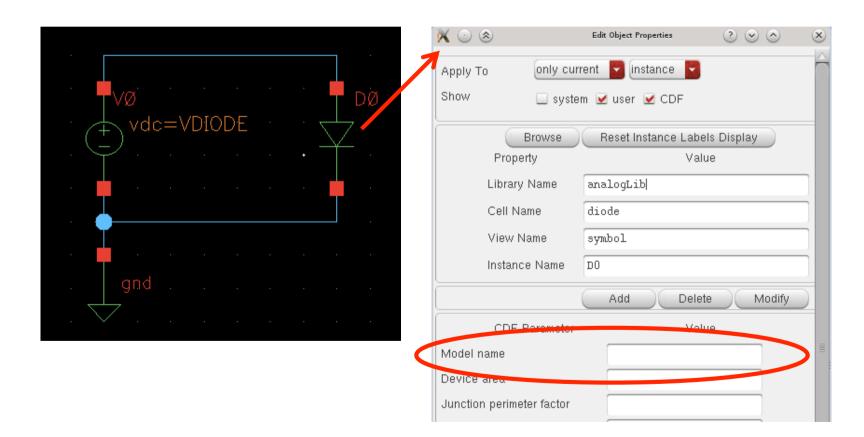


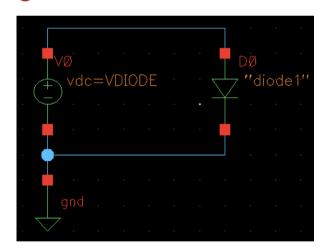
Exercise:The Diode

Prof. Dr. P. Fischer


Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

DC Characteristic

- Create the following schematic.
 - The diode is taken from analogLib
 - Note that NO model is associated to this 'generic' diode



Trying a DC simulation

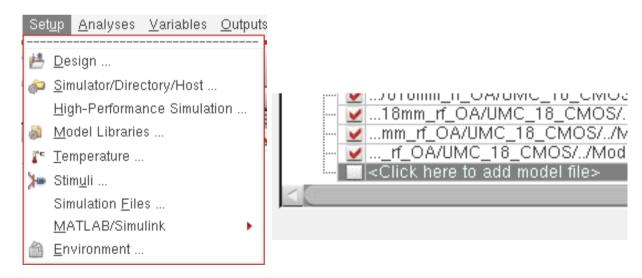
- Perform a DC simulation of VDIODE from 0...1V
 - An error occurs:

```
Error found by spectre during hierarchy flattening.
ERROR (CMI-2119): DO: Instance (of type diode) requires the use of a model.
```

Now assign a model with name 'diode1' to the diode:

Run the simulation again. You get a different error:

```
Error found by spectre during circuit read-in.
ERROR (SFE-23): "input.scs" 36: The instance `DO' is referencing an undefined model
```

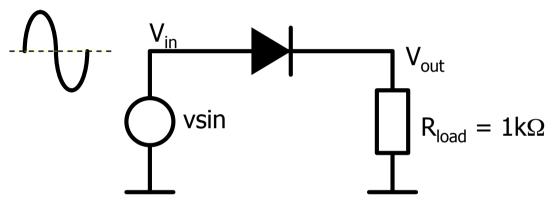



Defining a Model

• Create a text file MyDiode.lib with the following model definition:

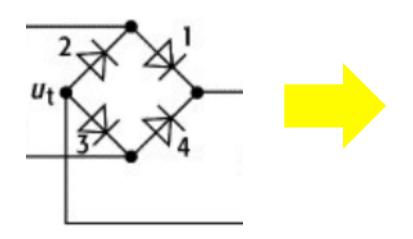
```
.MODEL diode1 d
+IS=1e-08 RS=0.05 N=1.5 EG=0.6
+XTI=0.05 BV=50 IBV=5e-08 CJO=1e-11 VJ=0.7 M=0.5
```

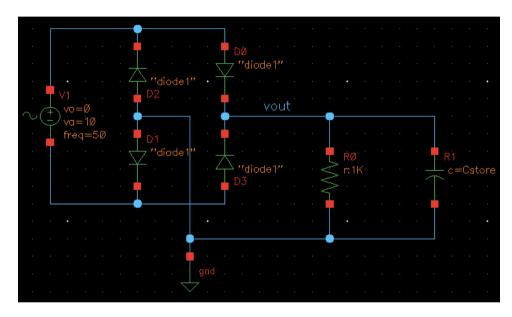
- The simulator needs to know about this file:
 - In Setup->Model Libraries..., add the file MyDiode.lib.


Run the simulation again.

Exercise 6.1: Simple Rectifier

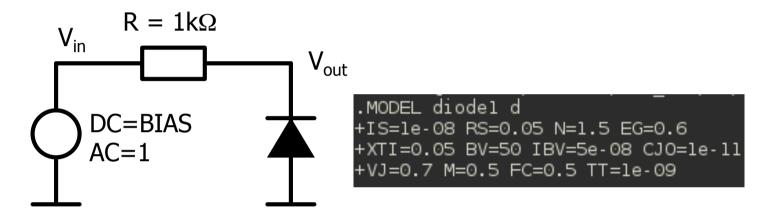
■ The diode can be used to generate a DC voltage from an AC voltage. In the simplest case, the negative parts of the AC wave are cut away:


- Use a sinusoidal source vsin from analogLib (transient sim...)
 Set parameters Frequency = 50Hz (half way down in the parameter list), Offset = 0, Amplitude = 10V
- Look at V_{out}. What is the peak amplitude. Why not 10V?
- Change R_{load} to $1M\Omega$. How does the peak amplitude change?
- Go back to R_{load} = 1k Ω . Add a capacitor of 1uF in parallel to R_{load} . What happens?
- Which C do you need to guarantee V_{out} > 8V? Calculate!



Exercise 6.2: Full Wave Rectifier

- The full wave rectifier ('Graetz') uses 4 diodes to utilize the negative half-wave as well:
 - make a Schematic


- How does V_{out} look like for C_{store} = 0
- How does the circuit work?
- What is the peak amplitude? Why?
- What C_{load} do you need to guarantee V_{out} > 8V? Calculate!

Exercise 6.3: Diode Capacitance

- A voltage dependent capacitance is part of the diode model.
- Implement the following circuit:

- Make an AC sweep from 1M to 1G or so for BIAS = 1V
 - What is the corner frequency?
- Change BIAS to 10V or 0.5V
 - Does the corner frequency change?
 - Is it changing in the right 'direction'?