

AC BEHAVIOR OF COMPONENTS

AC Behavior of Capacitor

Consider a capacitor driven by a sine wave voltage:

• The current:
$$I(t) = C \frac{dU(t)}{dt} = C U_0 \omega \cos(\omega t + \varphi)$$

is shifted by 90° (sin \leftrightarrow cos)!

ruprecht-karls-UNIVERSITÄT

HEIDELBERG

To simplify our calculations, we would like to extend the relation R= U/I to capacitors, using an impedance Z_C.

• In order to get the **phase** right, we use **complex** quantities: $U(t) = U_0 \sin(\omega t + \varphi) \quad \rightsquigarrow \quad U_0 \cdot e^{i(\omega t + \varphi)} = U_0 [\cos(\omega t + \varphi) + i \sin(\omega t + \varphi)]$

for voltages and currents.

- By mixing complex and real parts, we can mix sin() and cos() components and therefore influence the phase.
- Note: Often 'j' is used instead of 'i' for the complex unit, because 'i' is used as current symbol...
- Often 's' is used for iω (or jω)

To find ('back') the amplitude of such a complex signal, we calculate the length (magnitude) of the complex vector as

• To get the **phase**, we use real and imaginary parts:

$$\varphi = \operatorname{atan}\left(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right)$$

Note: this simple formula works only in 2 quadrants. You may have to look at the signs of Re(z) and Im(z)

- Mathematica knows complex arithmetic
- Useful Functions are Abs[] and Arg[]
 - Remember: Imaginary Unit is typed as ESC i i ESC
- If you want to simplify expression, Math. has to know that expressions like ω, R, C, U are real.

This can be done with	\$Assumptions = True;
Assumptions:	{Abs[iω], Arg[iω]}

```
    Sometimes
        ComplexExpand[]
            can be used. It assumes all
            arguments are real (but not
            necessarily > 0):
```

{Abs[i ω], Arg[i ω]} // ComplexExpand $\left\{\sqrt{\omega^2}, \operatorname{Arg}[i\omega]\right\}$

{Abs[ω], Arg[iω]}

{Abs[i \omega], Arg[i \omega]} // FullSimplify

{Abs[ω], Arg[i ω]}

\$Assumptions = $\omega > 0$;

{Abs[iω], Arg[iω]} // Simplify

```
\left\{\omega, \frac{\pi}{2}\right\}
```

Complex Impedance of the Capacitor

We know that

$$I(t) = C \, \frac{dU(t)}{dt}$$

• With $U(t) = U_0 \cdot e^{i(\omega t + \varphi)}$

we have $I(t) = CU'(t) = C \cdot U_0 \cdot i\omega \cdot e^{i(\omega t + \varphi)}$

Therefore

$$Z_C = \frac{U(t)}{I(t)} = \frac{1}{i\omega C} = \frac{1}{sC}$$
$$Z_L = i\,\omega L = s\,L$$

Similar:

The impedance of a capacitor becomes very small at high frequencies

• For an input voltage (sine wave of freq. ω) with phase = 0

$$U(t) = U_0 e^{i\omega t}$$
 we have
$$I(t) = \frac{U(t)}{Z_C} = U_0 e^{i\omega t} \cdot i\omega C$$

The amplitude of I(t) is

$$\begin{split} |I| &= \sqrt{I(t)I^*(t)} \\ &= \sqrt{U_0 e^{i\omega t} \cdot i\omega C \times U_0 e^{-i\omega t} \cdot (-i)\omega C} \\ &= \sqrt{U_0^2 e^{i\omega t} e^{-i\omega t} \cdot (i\omega C)(-i\omega C)} \\ &= U_0 \omega C \end{split}$$
Se is:

$$\varphi = \operatorname{atan}\left(\frac{\omega C}{0}\right) = \operatorname{atan}(\infty) = \frac{\pi}{2}$$

• We have dropped the time variant part and the constant U_0

Simplifying even more

- As we have just seen, the $U(t) = U_0 e^{i\omega t}$ propagates trivially to the output.
- We therefore drop this part and just use '1'!

- Replace all component by their complex impedances (1/(sC), sL, R)
- Assume a unit signal of '1' at the input

(in reality it is $U(t) = U_0 e^{i\omega t}$)

- Write down all node current equations or current equalities using Kirchhoff's Law (they depend on s)
 - You need N equations for N unknowns
- Solve for the quantity you are interested in (most often V_{out})
- Analyze the result (amplitude / phase / ...)

Example: Low Pass

- We have only one unknown: v_{out}
- Current equality at node v_{out} : $\frac{v_{in} v_{out}}{R} = I_R = I_C = v_{out} s C$

• Solve for
$$v_{out}$$
: $v_{in} - v_{out} = v_{out} s C R$
 $v_{in} = v_{out} (1 + s C R)$
 $\frac{v_{out}}{v_{in}} = H(s) = \frac{1}{1 + s C R}$

Mathematica Hint

Write down each node equation (here only 1):

 $EQ1 = \frac{vin - vout}{R} = vout s C;$

• Solve them:

Solve[EQ1, vout] // First

$$\Big\{ \texttt{vout} \rightarrow \frac{\texttt{vin}}{\texttt{l} + \texttt{C} \, \texttt{R} \, \texttt{s}} \Big\}$$

Define a transfer function:

$$H[s_] = \frac{vout}{vin} / . \%$$
$$\frac{1}{1 + CRS}$$

Low Pass as 'complex' voltage divider

- The LowPass can be seen as a 'AC' voltage divider with two impedances Z₁ = R and Z₂ = 1/sC
- Using the voltage divider formula, we get

$$H(s) = \frac{\mathbf{v}_{\text{out}}}{\mathbf{v}_{\text{in}}} = \frac{\mathbf{Z}_2}{\mathbf{Z}_2 + \mathbf{Z}_1} = \frac{\frac{1}{sC}}{\frac{1}{sC} + R} = \frac{1}{1 + sRC} = \frac{1}{1 + i\frac{\omega}{\omega_0}}$$

with $\omega_0 = 1/(RC)$, the 'corner frequency'.

This is the same as before...

 By exchanging R and C, low frequencies are blocked and high frequencies pass through.

We get
$$H_{HP|}(s) = \frac{R}{R + \frac{1}{sc}} = \frac{s R C}{1 + s R C}$$

• This is the (first order) 'High-Pass'.

A More Complicated Example

We now have two unknowns: v₁, v_{out}

$$EQ1(@v_1) : \frac{v_{in} - v_1}{R} = (v_1 - v_{out})sC$$
$$EQ2(@v_{out}) : (v_1 - v_{out})sC + \frac{v_{in} - v_{out}}{R} = v_{out}sC$$

Eliminating v₁ gives:

$$H(s) = \frac{1 + 2RC s}{1 + 3RC s + (RC)^2 s^2}$$

This is a second order TF. (order = max. exponent of s)

ruprecht-karls-UNIVERSITÄT

HEIDELBERG

The same using Mathematica

Node equations (here 2):

$$EQ1 = \frac{vin - v1}{R} == (v1 - vout) sC;$$
vin - vout

$$EQ2 = \frac{vn - vout}{R} + (v1 - vout) sC == vout sC;$$

Solve them:

Solve[{EQ1, EQ2}, {vout, v1}] // First

$$\left\{ \text{vout} \rightarrow -\frac{-\text{vin} - 2 \text{ C R s vin}}{1 + 3 \text{ C R s + } \text{C}^2 \text{ R}^2 \text{ s}^2}, \text{ v1} \rightarrow \frac{(1 + 3 \text{ C R s}) \text{ vin}}{1 + 3 \text{ C R s + } \text{C}^2 \text{ R}^2 \text{ s}^2} \right\}$$

Define a transfer function:

$$H[s_] = \frac{\text{vout}}{\text{vin}} / . \% / / \text{Simplify}$$
$$\frac{1 + 2 C R s}{1 + 3 C R s + C^2 R^2 s^2}$$

ruprecht-karls. UNIVERSITÄT HEIDELBERG

BODE PLOT

Transfer Function

- The transfer function of a linear, time invariant system visualizes how the amplitude and phase of a sine wave input signal of constant frequency ω appears at the output
- The frequency remains unchanged
- The transfer function H(ω) contains
 - The phase change $\Phi(\omega)$
 - The gain $v(\omega) = amp_in / amp_out(\omega)$

Bode Diagram: Definition

- The Bode Plot shows gain (+ phase) of the transfer function
- The frequency (x-axis) is plotted logarithmically
- Gain is plotted (y-axis) logarithmically, often in decibel

dBs for multiplied quantities just add !

CCS - Basics

Frequency

100

1000

CCS - Basics

Power functions are straight lines:

$$f(x) = x^n \Rightarrow \log[f(x)] = n \log(x)$$

Bode Diagram: Properties

1/x function has slope -1:

$$f(x) = \frac{1}{x} = x^{-1} \Rightarrow \log[f(x)] = -1\log(x)$$

Multiplied functions are added in plot:

$$f = f_1 \cdot f_2 \Rightarrow \log[f] = \log(f_1) + \log(f_2)$$

f1=2+x;f2=x⁻¹;

THE LOW PASS FILTER

Analysis of the Low Pass Transfer Function

(rad or degree)

P. Fischer, ZITI, Uni Heidelberg, Seite 22

CCS - Basics

The same in dB

Bode Plot of LowPass (Phase)

ω₀ = 10
Lin-Log Plot!

CCS - Basics

P. Fischer, ZITI, Uni Heidelberg, Seite 25

Where is the Corner?

$$H(\omega) = \frac{1}{1 + i\frac{\omega}{\omega_0}}$$

- At the corner frequency $\omega_0 = 1/(RC)$:
- The impedance of the capacitor is

 $1/(sC) = 1/(i \omega_0 C) = R/I$

with absolute value R.

- Therefore: At the corner frequency, the (absolute value) of the impedances of the capacitor and the resistor are the same.
 - C becomes 'more important' than R

Series Connection of two Low Pass Filters

Consider two identical LP filters. A 'unit gain buffer' makes sure that the second LP does not load the first one:

From the properties of the LogLog Plot, the TF of the 2nd order LP is just the sum of two 1st order LPs:

All circuits behave like low-passes (at some frequency)!

- So far, frequency is expressed with ω, i.e. in radian / second
- We have: $\omega = 2 \pi v$
- Therefore, the frequencies in Hertz are 2π lower!!!

Low Pass and High Pass

ruprecht-karls-UNIVERSITÄT HEIDELBERG

CCS - Basics

- \blacksquare Replace s by i ω
- Calculate (squared) gain as absolute value

gain2 = H[i \omega] Conjugate[H[i \omega]] // ComplexExpand // Simplify

 $\frac{1 + 4 C^2 R^2 \omega^2}{1 + 7 C^2 R^2 \omega^2 + C^4 R^4 \omega^4}$

- To plot, convert to dB by taking 20 Log₁₀[\sqrt{H}].
 - The sqrt can be eliminated by using 10 Log₁₀[H]

LogLinearPlot[10 Log[10, gain2] /. { $R \rightarrow 1$, $C \rightarrow 1$ }, { ω , 0.01, 100}, , PlotRange \rightarrow {-20, 2}, Filling \rightarrow -20]

For phase, better use ArcTan[Re,Im] to get quadrant right

LogLinearPlot $\left[\frac{180}{\pi}$ ArcTan[Re[H[$i\omega$]], Im[H[$i\omega$]]] /. {R \rightarrow 1, C \rightarrow 1}, { ω , 0.01, 100}}

A More Complex Example

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

• The transfer function is $H(s) = (C L s^2)/(1+C R s+C L s^2)$

It is of 'second order' (s has exponent of 2 in denominator)

Phase

- For fun:
 - When is filter steep & flat?
 - Zoom to corner frequency:

CIRCUIT SIMPLIFICATIONS

Large and Small Values

To roughly understand behavior of circuits, only keep the dominant components:

- Eliminate larger or the smaller part (depending on circuit!)
- Error ~ ratio of components

ruprecht-karls-UNIVERSITÄT HEIDELBERG

The same for Capacitors

P. Fischer, ZITI, Uni Heidelberg, Seite 36

• Behavior depends on frequency $(|Z_C| = 1/(2\pi v C))$

ruprecht-karls-UNIVERSITÄT

HEIDELBERG