
AC BEHAVIOR OF COMPONENTS 



AC Behavior of Capacitor 

§ Consider a capacitor driven by a sine wave voltage: 

§ The current: 
 
is shifted by 90o (sin ↔ cos)! 
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Complex Impedance 

§ To simplify our calculations, we would like to extend the 
relation R= U/I to capacitors, using an impedance ZC . 

§  In order to get the phase right, we use complex quantities: 
 
 
for voltages and currents. 
•  By mixing complex and real parts, we can mix sin() and cos() 

components and therefore influence the phase. 

§ Note: Often ‘j’ is used instead 
of ‘i’ for the complex unit, because 
 ‘i’ is used as current symbol… 

§ Often ‘s’ is used for iω (or jω) 
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§ To find (‘back’) the amplitude of such a complex signal, we 
calculate the length (magnitude) of the complex vector as 

 
 

§ To get the phase, we use real and imaginary parts: 

 
Note: this simple formula works only 
in 2 quadrants. You may have to look 
at the signs of Re(z) and Im(z) 

From Complex Values back to Real Quantities 
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Hints for Mathematica 

§ Mathematica knows complex arithmetic 
§ Useful Functions are Abs[] and Arg[]

• Remember: Imaginary Unit is typed as  ESC i i ESC 
§  If you want to simplify expression, Math. has to know that 

expressions like ω, R, C, U are real. 
•  This can be done with 

Assumptions: 
 
•  Sometimes 
ComplexExpand[] 
can be used. It assumes all 
arguments are real (but not 
necessarily > 0): 
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Complex Impedance of the Capacitor 

§ We know that  

§ With  
 
we have  

§ Therefore 

§ Similar:  
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Checking this again for a Capacitor 

§ For an input voltage (sine wave of freq. ω) with phase = 0 

 
we have 

§ The amplitude of I(t) is 

§ The phase is: 

• We have dropped the time variant part and the constant U0 
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Simplifying even more 

§ As we have just seen, the                           propagates 
trivially to the output. 

§ We therefore drop this part and just use ‘1’! 
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Recipe to Calculate Transfer Functions 

§ Replace all component by their complex impedances 
(1/(sC), sL, R) 

§ Assume a unit signal of ‘1’ at the input 
 
(in reality it is                          ) 

§ Write down all node current equations or current equalities 
using Kirchhoff’s Law (they depend on s) 
•  You need N equations for N unknowns 

§ Solve for the quantity you are interested in (most often Vout) 

§ Analyze the result (amplitude / phase / …) 
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§ Consider 

§ We have only one unknown: vout 

§ Current equality at node vout:  

§ Solve for vout:  

Example: Low Pass 
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Mathematica Hint  

§ Write down each node equation (here only 1): 

 
§ Solve them: 

§ Define a transfer function: 
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§ The LowPass can be seen as a ‘AC’ voltage divider with 
two impedances Z1 = R and Z2 = 1/sC 

§ Using the voltage divider formula, we get 
 
 
 
 
with ω0 = 1/(RC), the ‘corner frequency’. 

§ This is the same as before… 

Low Pass as ‘complex’ voltage divider 
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C 

The HIGH Pass 

§ By exchanging R and C, low frequencies are blocked and 
high frequencies pass through. 

 

§ We get 

 
§ This is the (first order) ‘High-Pass’. 
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A More Complicated Example 

§ We now have two unknowns: v1, vout 

§ Eliminating v1 gives: 

§ This is a second order TF. (order = max. exponent of s) 
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The same using Mathematica 

§ Node equations (here 2): 

 

§ Solve them: 

 

§ Define a transfer function: 
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BODE PLOT 



Transfer Function 

§ The transfer function of a linear, time invariant system 
visualizes how the amplitude and phase of a sine wave 
input signal of constant frequency ω appears at the output 

§ The frequency remains unchanged 
§ The transfer function H(ω) contains 

•  The phase change Φ(ω) 
•  The gain v(ω) = amp_in / amp_out (ω) 
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Bode Diagram: Definition 

§ The Bode Plot shows gain (+ phase) of the transfer function 
§ The frequency (x-axis) is plotted logarithmically 
§ Gain is plotted (y-axis) logarithmically, often in decibel 

• DB(x) = 20 log10 (x):  × 10  +20 dB 
 × 100  +40 dB 
 × 2    6 dB   (not exactly!) 
 × 1    0 dB 
 / 2  -6 dB  
 / √2  -3 dB 

 
 
 
 
 
 
•  dBs for multiplied quantities just add ! 
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Bode Diagram: Properties 

§ Power functions are straight lines: 
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Bode Diagram: Properties 

§ 1/x function has slope -1: 

 
§ Multiplied functions are added in plot: 
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THE LOW PASS FILTER 



Analysis of the Low Pass Transfer Function 

§ Transfer Function: 

 
§ Magnitude: 

§ Phase: 
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Bode Plot of LowPass (Amplitude) 

§ ω0 = 10 
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The same in dB 
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Bode Plot of LowPass (Phase) 

§ ω0 = 10 
§ Lin-Log Plot! 
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Where is the Corner? 

§ At the corner frequency ω0 = 1/(RC): 

§ The impedance of the capacitor is 
 
     1/(sC) = 1/(i ω0 C) = R/I 
 
with absolute value R. 

§ Therefore: At the corner frequency, the (absolute value) of 
the impedances of the capacitor and the resistor are the 
same. 
• C becomes ‘more important’ than R 
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Series Connection of two Low Pass Filters 

§ Consider two identical LP filters. A ‘unit gain buffer’ makes 
sure that the second LP does not load the first one: 

§ From the properties of the LogLog Plot, the TF of the 2nd 
order LP is just the sum of two 1st order LPs: 
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Why bother so much about the low pass ? 

§ All circuits behave like low-passes (at some frequency)! 
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Caveat! 

§ So far, frequency is expressed with ω, i.e. in radian / second 
§ We have: ω = 2 π ν 
§ Therefore, the frequencies in Hertz are 2π lower!!! 
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Low Pass and High Pass 
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Bode Plots with Mathematica 

§ Replace s by i ω
§ Calculate (squared) gain as absolute value  

§ To plot, convert to dB by taking 20 Log10[√H]. 
•  The sqrt can be eliminated by using 10 Log10[H] 

§ For phase, better use ArcTan[Re,Im] to get quadrant right 
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A More Complex Example 

§ Consider a (High Pass)  filter with an inductor: 

 
§ The transfer function is 
§  It is of ‘second order’ (s has exponent of 2 in denominator) 
§ Magnitude: 

L=C=1 
R=0.1,0.5,1,2 

§  ‘Inductive peaking’ 
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Phase 

§ Phase 

§ For fun: 
• When is filter 

steep & flat? 
•  Zoom to corner 

frequency: 
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CIRCUIT SIMPLIFICATIONS 



Large and Small Values 

§ To roughly understand behavior of circuits, only keep the 
dominant components: 

§ Eliminate larger or the smaller part (depending on circuit!) 
§ Error ~ ratio of components 
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The same for Capacitors 
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Resistors AND Capacitors 

§ Behavior depends on frequency   ( |ZC| = 1/(2πν C) ) 
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