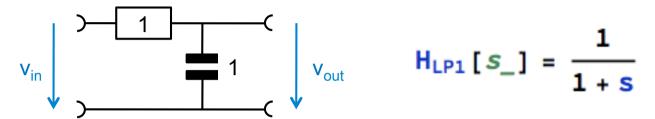


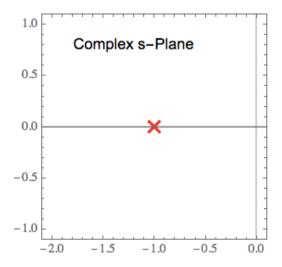
FOR FUN: HIGHER ORDER FILTERS

Reminder: One Low Pass

• (For simplicity, we use fixed values for R and C, often 1 Ω/F)



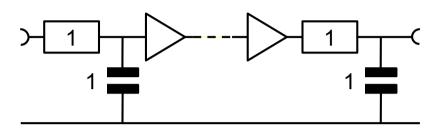
- Mathematically, H_{I P1}[s] has a *POLE* at s = -1.
- This can be illustrated in the COMPLEX s-Plane:



■ This particular pole is *real*, i.e. it lies on the real axis

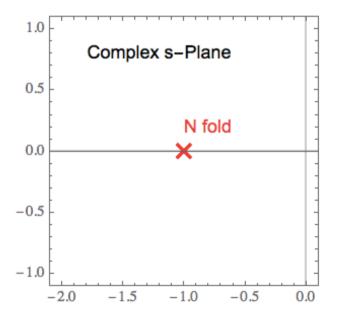
Reminder: Cascaded Low Pass Stages

■ If we cascade N stages with buffers, we get



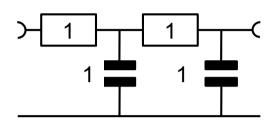
$$\mathsf{H}_{\mathsf{LPN}}[s_{-}] = \frac{1}{(1+s)^{\mathsf{N}}}$$

■ H_{I PN}[s] has a *N-fold* POLE at the same location s = -1.



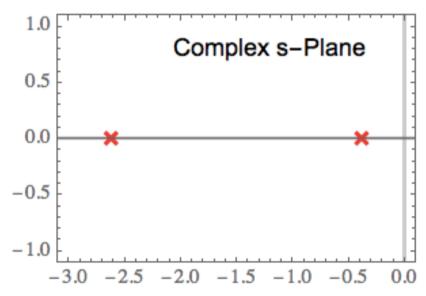
Two Unbuffered Low Pass Stages

■ If we cascade two stages *without buffer*, we get



$$H_{LPCasc|}[s] = \frac{1}{1+3s+s^2}$$

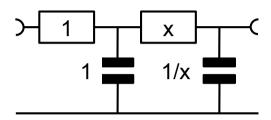
We now have two different (still real) poles:



(Their locations depend on R/C of the second stage)

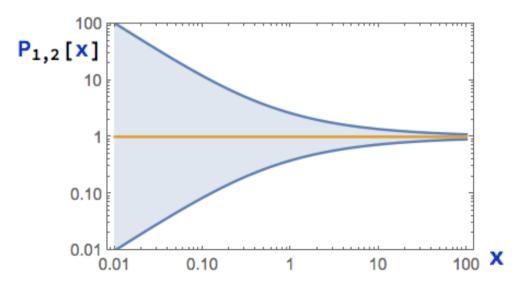
(Pole Location for Previous Case)

■ If we modify R,C of the second stage, keeping RC =1, we get



$$H[s_{-}] = \frac{x}{s + x + 2 s x + s^{2} x}$$

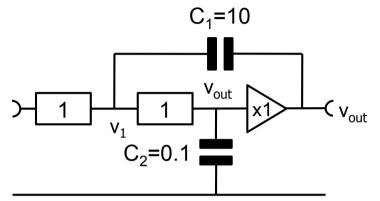
■ The poles are at
$$P_{1,2}[x] = \frac{-1 - 2 \times \pm \sqrt{1 + 4 \times 2}}{2 \times 2}$$



(when x is large, the 2nd LP does not load the 1st)

An Active Filter

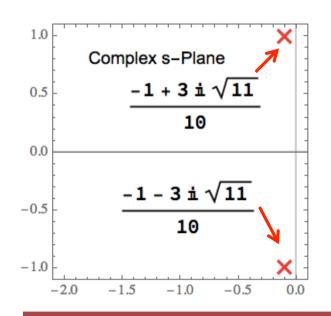
Now consider the following filter ('Sallen and Key')

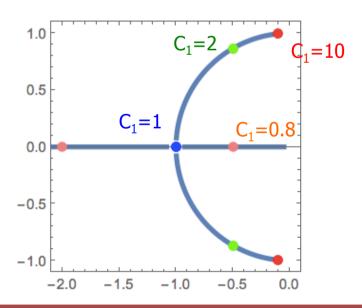


EQ1 =
$$\frac{\text{vin} - \text{v1}}{1}$$
 == $\frac{\text{v1} - \text{vout}}{1}$ + (v1 - vout) s 10;
EQ2 = $\frac{\text{v1} - \text{vout}}{1}$ == vout s $\frac{1}{10}$;

$$H[s] = \frac{5}{5 + s + 5 s^2}$$

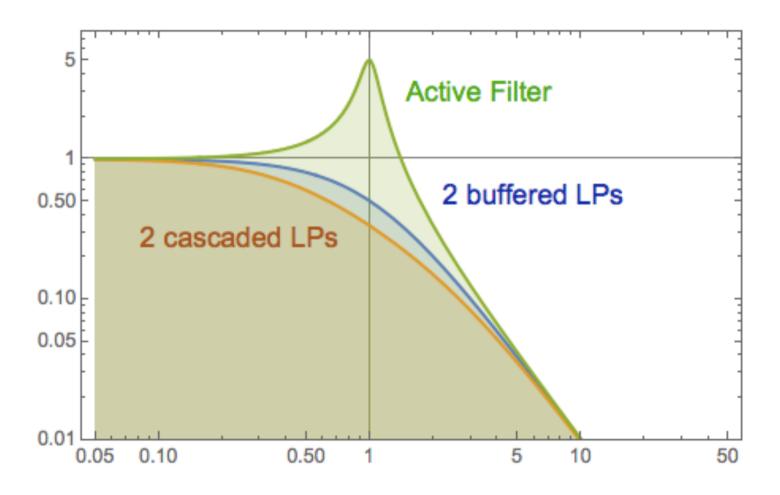
■ This transfer function has two *COMPLEX* (conjugate) poles:





Bode Plots of 2nd Order Filters

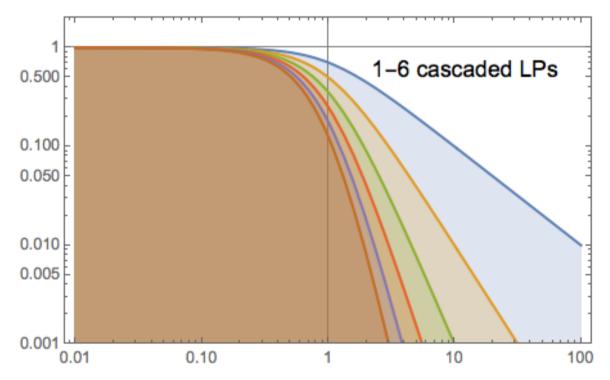
- The active filter has an overshoot (for the values chosen)
- This is typical for complex conjugate poles



MAKING STEEP FILTERS

A Steep Low Pass Filter

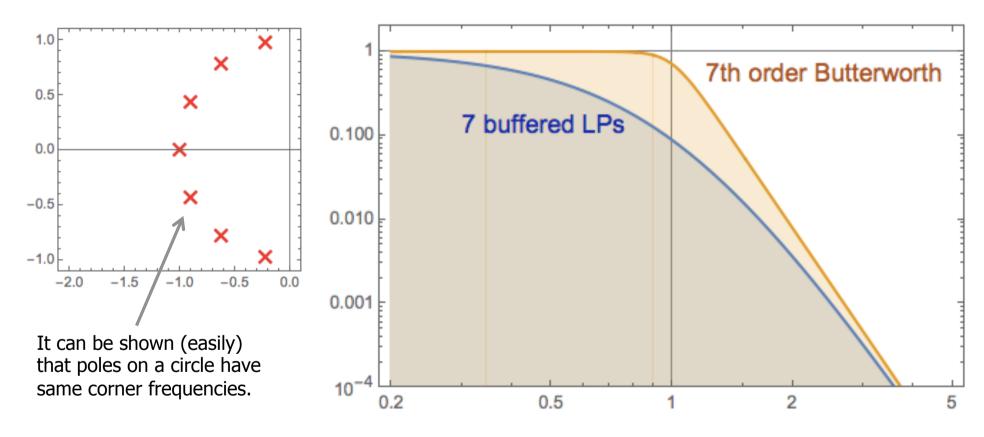
- We want to design a higher (Nth) order low-pass filter which drops suddenly from pass band to stop band.
- We know that we roll off with slope -N at the end (for $s\rightarrow \infty$).



- Simple cascaded LPs attenuate by 2^{-N/2} at the corner
- Can this be improved?

Choosing the Poles

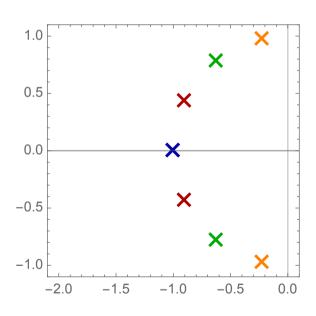
- The Idea: Use complex poles and adjust them 'somehow'
- 'Butterworth' arranges poles on circle. Here: 7th order.

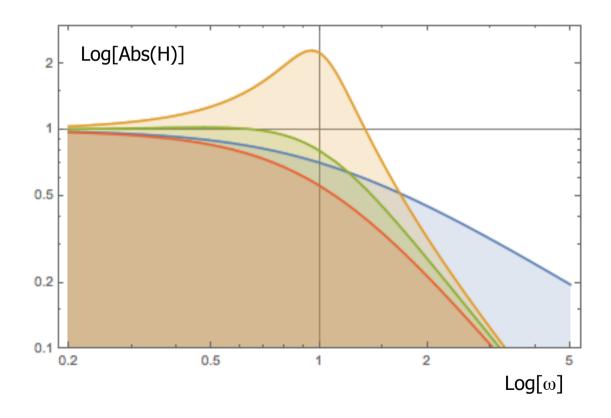


Wow! Butterworth attenuation at the corner is only -3dB!

(Decomposing the Butterworth Filter)

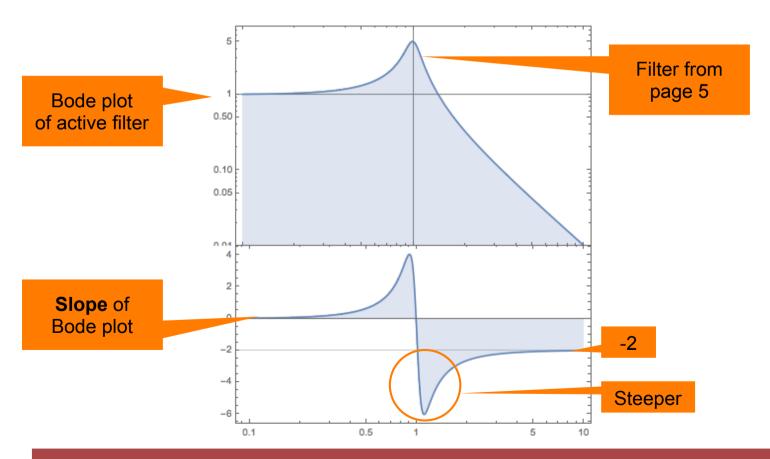
- For N=7:
 - One real pole (1st order, blue)
 - 3 conjugate poles (2nd order)





Even Steeper?

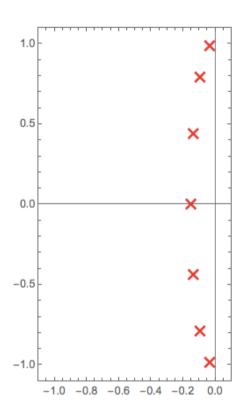
- Remember: For *large* frequencies, we will *always* roll off with s^{-N} (the order of the filter, i.e. the number of caps)
- But: The 'peaking' for complex poles provides steeper response close to the bandwidth:



Placing the Poles...

- There are obviously MANY possibilities to place the poles...
- Desired filter properties are for instance
 - Flatness/ripple of the response in the pass band
 - Steepness of the drop
 - Ripple in the stop band
 - Response to step signals (overshoots)
 - Phase behavior
- Four main types have evolved:
 - Butterworth: Flat pass band
 - Bessel: No phase shift, no overshoot
 - Chebyshev: Steeper rolloff, but ripple in pass band
 - Elliptic: Even steeper rolloff, but ripple in pass and stop band

The Chebyshev Filter (7th order)



Pole location for a 7th order Chebyshev filter (there are others, depending on the desired pass band ripple)

