

The pn-Diode

A few Natural Constants

■ q 1.602 × 10⁻¹⁹ C elementary charge

■ k 1.381 × 10⁻²³ J/K Boltzmann constant

■ 4kT 1.657 × 10⁻²⁰ J Noise Power density @ 300K

• U_T = kT/q = 25.9 mV Thermal voltage @ 300K

• ϵ_0 8.854 × 10⁻¹² F/m vacuum susceptibility (Hint: C = ϵ_0 A/d, 1m x 1m x 1m: ~10pF)

A few Constants for Silicon

E_g	1.12	eV	band gap at 300K
N_{ator}	$_{\rm n}$ 5 x 10 ²²	cm ⁻³	atom density
■ N _i	1.01×10^{10}	cm ⁻³	intrinsic carrier density at 300K* ('old' value: 1.45)
■ μ _e	1400	cm ² /Vs	electron mobility (@ low fields)
• µ _h	480	cm ² /Vs	hole mobility ($v = \mu E$)
■ E _{cit}	1	V/µm	critical field where mobility starts to drop
• ε _{Si}	11.9		dielectric constant of silicon
• ε _{SiO2}	3.90		dielectric constant of silicon - dioxide
	_		
E_{max}	$_{3} \sim 3 \times 10^{7}$	V/m	break through field strength
_			
E_{eh}	3.6	eV	Av. Energy required to generate an e-h pair
• ρ	7.87	gcm ⁻³	density
• λ	150	W / (mK)	thermal conductivity
- α	2.56	10 ⁻⁶ K ⁻¹	thermal expansion coefficient (e,g, Al: 23.1)

^{*}Sproul AB, Green MA. Improved value for the silicon intrinsic carrier concentration from 275 to 375 K. Journal of Applied Physics. 1991;70:846-854. Available from: http://link.aip.org/link/?JAP/70/846/1

CCS: The pn Diode

Silicon

CCS: The pn Diode © Peter Fischer, ziti 4

Silicon Crystal

Face centered Cubic lattice

The Diode (p-n-junction)

Silicon: Crystal & Doping

Doping with 5-valued DONOR atoms:

- electrons can escape easily
- N-conductor
- Remaining donor atoms are positive

- this is like a positive moving charge
- P-conductor
- Remaining acceptors are negative

The pn-junction (diode)

- Bringing together a p- and n doped region:
 - A depletion zone with no charge carriers is created
 - There is a space charge
 - -> There is an electric field

Origin of Depletion Layers

- We consider an idealized, 'abrupt' transition between n- and p- region (this is smooth in reality)
- Due to the concentration gradient, electrons diffuse from the $n \rightarrow p$ region (holes from $p \rightarrow n$).
- The carriers compensate and we get depleted regions without mobile carriers
- The fixed, ionized atoms are positively charged in the n-region (negatively in the p-region)
- This leads to an electric field
- The field is associated with a electrostatic potential. This 'built in' potential depends only on doping.
- The field leads to a drift of electrons/holes backwards.
- The thickness of the depletion region is determined by the equilibrium between drift- and diffusion currents
- In reality, the depletion zone drops more slowly to zero, but the transition region is small.

Derivation of the Build-In Voltage

- Derivation steps (see extra file on web site for explanations)
 - p(x)= hole density):

$$j_{Feld}(x) = -j_{Diff}(x)$$

$$q \mu p(x)E(x) = q D \frac{dp(x)}{dx}$$

$$-\frac{q}{kT}dV(x) = \frac{dp(x)}{p(x)}$$

$$-\frac{q}{kT} \int_{V_p}^{V_n} dV(x) = \int_{p_p}^{p_n} \frac{dp(x)}{p(x)}$$

$$-\frac{q}{kT}(V_n - V_p) = \ln\left(\frac{p_n}{p_p}\right)$$

$$V_{bi} := V_n - V_p = \frac{kT}{q} \ln\left(\frac{p_p}{p_n}\right)$$

V_{bi} is often also called 'Diffusion Voltage'

- kT/q is a quantity which occurs often
- It is called the 'Thermal Voltage'
- It is ~26mV at room temperature

$$V_{bi} = \left(\frac{kT}{q}\right) \ln\left(\frac{N_A N_D}{n_i^2}\right)$$
 - It is ~26mV at room temperature
$$\approx \left[\log\left(\frac{N_A}{n_i}\right) + \log\left(\frac{N_D}{n_i}\right)\right] \times 60\,\mathrm{mV}$$
 For typical doping concentrations, this is a few 100 mV

Applying an External Voltage

- An external voltage superimposes an additional field and thus changes the drift contribution
- The equilibrium thickness is changed
- When a positive voltage is applied to the p-side, the overall field is reduced, diffusion becomes stronger and ultimately an increasing current flows
 - To really understand this, solid state physics is required
- It turns out that $I_D = I_S(e^{U_D/U_{TH}} 1)$
 - Diode current is exponential in a VERY wide range
 - U_D = Diode applied to device (relative to n-Side)
 - I_S = Saturation Current = Device property (mainly just size)
 - U_{TH} = Thermal Voltage = k T / q = 25.9mV @ RT

Diode Forward Current

- For I_S =0.1pA, U_{th} = 25.9 mV
- No magic '0.6V' forward voltage, depends on 'scale'!

Thickness of Depleted Region (See also extra file)

Charge on both sides must be equal:

$$Q_p = -Q_n$$

$$Ax_pqN_A = -Ax_nqN_D$$

$$x_pN_A = -x_nN_D.$$

Field at junction:

$$E_{max} = \frac{q}{\epsilon} x_p N_A < 0.$$

■ Potential = V_{bi}:

$$\Delta V = -\int_{x_p}^{x_n} E(x) dx = -\frac{1}{2} \left(x_n \right)$$

$$= \frac{q}{2\epsilon} \frac{(N_A + N_D)N_A}{N_D} x_p^2$$

$$x_d = \sqrt{\frac{2\epsilon}{q} \frac{N_A + N_D}{N_A N_D} V_{bi}} \sqrt{1 - \frac{V_{ext}}{V_{bi}}} \quad \text{Dominated by low doped side! } \sqrt{\frac{2\epsilon}{q} \frac{V_{bi}}{N_D}}$$

Note: Depletion is thick for LOW doping

Dependence on External Voltage

For the considered abrupt junction (p changes to n with no transition), we have

$$x_d = \sqrt{\frac{2\epsilon}{q} \frac{N_A + N_D}{N_A N_D} V_{bi}} \sqrt{1 - \frac{V_{ext}}{V_{bi}}}$$

i.e. the thickness of the depletion region increases as the square root of the external voltage (for voltages >> Vbi)

■ Typical values on chips: < 1 µm</p>

Capacitance

The depletion region defines a parallel plate capacitor

$$C_{j} = \epsilon_{0} \cdot \epsilon_{Si} \cdot \frac{A}{x_{d}}$$

$$\frac{C_{j}}{A} = \sqrt{\frac{q\epsilon_{0}\epsilon_{Si}}{2} \frac{N_{A}N_{D}}{N_{A} + N_{D}} \frac{1}{V_{bi}}} \left(1 - \frac{V_{ext}}{V_{bi}}\right)^{-1/2}$$

$$= C_{j0} \cdot \left(1 - \frac{V_{ext}}{V_{bi}}\right)^{-1/2}$$

Depends on doping profile: 0.5 for abrupt junction 0.33 for linear junction

Diode Summary

- Diode is conducting, when p-region is at positive voltage
- Forward current $I_D = I_S(exp(V_D/U_T) 1)$. $(U_T = kT/q \sim 26mV @ 300K)$. I increases x 10 every 60mV
- E-Field is largest at the junction
- Potential increases quadratically (in constant doping)
- Depletion region grows towards low doped side.
- Growth with √ of applied voltage

Capacitance decreases

$$\sqrt{\frac{2\epsilon}{q} \frac{V_{bi}}{N_D}}$$

DIODE MODEL

A pn-Diode on a Chip Wafer

- For instance: n-doped Si 'Wafer' is p-doped at the surface
- EACH pn junction forms a diode

Aluminium contacts

Cross section of an pn-junction on a wafer

Modell of the Diode

relevant for forward bias

Important SPICE Parameters of the Diode

Parameter	Symbol	SPICE Name	Einheit	Default
Sättigungsstrom (Saturation current)	I _s	IS	A	1e-14
Serienwiderstand (Series resistance)	R _s	RS	Ohm	0
Sperrschichtkapazität bei VD=0V (Zero bias junction cap.)	C _{j0}	CJ0	F	0
Exponent in Kapazitätsformel (Grading Koefficient)	m	М	-	0.5
Diffusionsspannnung (Junction Potential)	Φ_0	VJ	V	1
Emissionskoeffizient (Emission Coefficient)	n	N	-	1
Transitzeit (Transit time)	ττ	π	S	0

- The values are for a unit size device. They are later multiplied by the diode AREA
- For capacitances, there are often two parameter sets for the AREA of the diode and the (lateral) SIDEWALL. Both contributions are added
- Transit time tells how long it takes for carriers to pass the depletion region.

Simple Small Signal Model

Determine the slope at the working point:

$$I \approx I_s \cdot e^{U/U_{Th}}$$

$$\frac{\partial \mathbf{I}}{\partial \mathsf{U}} \approx \frac{1}{\mathsf{U}_{\mathsf{Th}}} \cdot \mathbf{I}_{\mathsf{S}} \cdot \mathsf{e}^{\mathsf{U}/\mathsf{U}_{\mathsf{Th}}} = \frac{\mathbf{I}}{\mathsf{U}_{\mathsf{Th}}}$$

$$\Rightarrow R_{eq}(U_0) = \frac{U_{Th}}{I_0}$$

