

Exercise 1: Thévenin Equivalent & RC-Circuits

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

Recommendations

- I strongly recommend to use a mathematical program (Mathematica, Maple, SageMath,...) to solve the exercises
- For transfer functions, inspect each result:
 - What happens for $\omega \to 0, \infty$?
 - What happens if component values go to 0 or ∞ ?

- Derive the expressions for the series and parallel connection of capacitors using
 - Charge conservation
 - Complex impedance & Kirchhoff's law

1. Charge conservation: $V \times C_1 + V \times C_2 = Q_1 + Q_2 = Q_{par} = V \times C_{par} \rightarrow C_1 + C_2 = C_{par}$

2. Kirchhoff & complex impedance: $V sC_1 + V sC_2 = i_1 + i_2 = i_{par} = V sC_{par} \rightarrow C_1 + C_2 = C_{par}$

1. Charge conservation:

Note: no charge can 'escape' the middle node, so that $Q_1 = Q_2 = Q_{ser}$ $V = V_1 + V_2 = Q_1/C_1 + Q_2/C_2 = Q/C_1 + Q/C_2 = Q/C_{ser}$ $\rightarrow 1/C_1 + 1/C_2 = 1/C_{ser}$

2. Kirchhoff & complex impedance: $V_1 ext{ sC}_1 = V_2 ext{ sC}_2$ and $V_1 + V_2 = V \rightarrow V_1 = V ext{ C}_2 / (ext{ C}_1 + ext{ C}_2)$ $\rightarrow ext{ i}_1 = V_1 ext{ sC}_1 = V ext{ sC}_1 ext{ C}_2 / (ext{ C}_1 + ext{ C}_2)$ $\rightarrow ext{ C}_{ser} = ext{ i} / (ext{ Vs}) = ext{ i}_1 / (ext{ Vs}) = ext{ C}_1 ext{ C}_2 / (ext{ C}_1 + ext{ C}_2)$

Derive the Thévenin Equivalent for the following circuit:

- Try two different methods:
 - Use the Open/Short method with Kirchhoff's rules
 - Convert the I-source part to a voltage source first...

ruprecht-karls-UNIVERSITÄT HEIDELBERG

2Ω

+

3V

1A

Solution 1.1 – Kirchhoff

1. Short circuit current:

- EQ1: $1 \text{ A} + v_1 / 5\Omega + v_2 / 2\Omega = 0$
- EQ2: $v_2 = v_1 + 3V$
- $\rightarrow v_2 = -4/7 \vee$ • $\rightarrow I_{short} = -2/7 \wedge$

2. Open circuit voltage:

• EQ1: $1 \text{ A} + v_1 / 5\Omega = 0$

• EQ2:
$$v_2 = v_1 + 3V$$

•
$$\rightarrow v_1 = -5 V$$

$$\rightarrow v_2 = V_{open} = -2V$$

• Source: $V_0 = V_{open} = -2 V$, $R_V = V_0 / I_{short} = 7 \Omega$

Solution 1.1 – Thévenin Transformations

1. Convert the current source to a voltage source:

2. Use this in the circuit:

Exercise 1.2

What is the Thévenin Equivalent of the following circuit?

- Use two methods to find the result:
 - parallel / series connection of resistors and your knowledge about the voltage divider
 - short/open method

Parallel-Series Connection, Voltage Divider:

Solution 1.2

- Rtotal = $2\Omega + 2/3\Omega = 8/3 \Omega$
- Itotal = 2V / Rtotal = 3/4 A
- Ishort = 2/3 Itotal = 1/2 A

Zin = Vopen / Ishort
=
$$1V / \frac{1}{2} A$$

= 2Ω

A voltage source with voltage V₀ and output resistance R₀ is loaded by a resistor R_L:

- What is the output voltage V_{out}?
- Which current flows in R_L?
- What power is dissipated in R_L?
 - Check that noting is dissipated for $R_L{=}0$ and $R_L{\rightarrow}{\sim}$
- For which value of R_L is the dissipation maximized?
 - What is the dissipation?

ruprecht-karls-UNIVERSITÄT HEIDELBERG

$$\ln[29]:= \operatorname{Vout} = \operatorname{Vo} \frac{\operatorname{RL}}{\operatorname{R0} + \operatorname{RL}};$$

$$\ln[30]:= \operatorname{Iout} = \frac{\operatorname{Vout}}{\operatorname{RL}}$$

$$\operatorname{Out}[30]= \frac{\operatorname{V0}}{\operatorname{R0} + \operatorname{RL}}$$

$$\ln[31]:= \operatorname{Pout} = \operatorname{Vout} \operatorname{Iout}$$

$$\operatorname{Out}[31]= \frac{\operatorname{RL} \operatorname{V0}^2}{(\operatorname{R0} + \operatorname{RL})^2}$$

$$\ln[38]:= \operatorname{Table}[\operatorname{Limit}[\operatorname{Pout}, \operatorname{RL} \to \mathbf{X}], \{\mathbf{X}, \{\mathbf{0}, \infty\}\}]$$

$$\operatorname{Out}[38]= \{\mathbf{0}, \mathbf{0}\}$$

$$\ln[39]:= \operatorname{Solve}[\operatorname{D}[\operatorname{Pout}, \operatorname{RL}] == \mathbf{0}, \operatorname{RL}] // \operatorname{First}$$

$$\operatorname{Out}[39]= \{\operatorname{RL} \to \operatorname{R0}\}$$

$$\ln[40]:= \operatorname{Pout} /. \%$$

$$\operatorname{Out}[40]= \frac{\operatorname{V0}^2}{4\operatorname{R0}}$$

Exercise 1.4

Derive the Transfer Function of this circuit:

- Use 3 different approaches:
 - Treat the circuit directly (using Kirchhoff's rule)
 - Consider it as a voltage divider of two Impedances. Use R_1 for Z_1 and the parallel connection of R_2 and C_2 for Z_2
 - Replace the (resistive) voltage divider by its Thévenin equivalent and then add the capacitor

Make a Bode Plot

• Describe the difference to the normal Low Pass Filter

Solution 1.4

Direct Treatment:

$$EQ = \frac{Vin - Vout}{R1} = Vout s C2 + \frac{Vout}{R2};$$

Solve[EQ, Vout] // First

$$\left\{ \texttt{Vout} \rightarrow \frac{\texttt{R2 Vin}}{\texttt{R1} + \texttt{R2} + \texttt{C2 R1 R2 s}} \right\}$$

$$Hdirect = \frac{Vout}{Vin} / . %$$
$$\frac{R2}{R1 + R2 + C2 R1 R2 s}$$

Voltage Divider:

Hdiv =
$$\frac{\mathbb{Z}2}{\mathbb{Z}1 + \mathbb{Z}2}$$
 /. $\left\{\mathbb{Z}1 \rightarrow \mathbb{R}1, \mathbb{Z}2 \rightarrow \left(\frac{1}{\mathbb{R}2} + \mathbb{S}\mathbb{C}2\right)^{-1}\right\}$ // Simplify
$$\frac{\mathbb{R}2}{\mathbb{R}1 + \mathbb{R}2 + \mathbb{C}2\mathbb{R}1\mathbb{R}2\mathbb{S}}$$

Hdirect == Hdiv

True

Solution 1.4

- Compared to the 'simple' Low-Pass:
 - The signal is attenuated by $R_1/(R_1+R_2)$
 - The time constant is lowered (i.e. the corner frequency is raised)

Exercise 1.5: Notch Filter

- Consider the following circuit made of cascaded High- and Low Pass stages:
 - The resistors at the output just add the signals at (a) and (b)

- What is the output signal at the corner frequency?
 - Explain this by comparing amplitudes *and phases* at (a) and (b)

- At the corner frequency, the signal is fully stopped!
- This is because the phases of the two signals are ± 90°, i.e. the signals are complementary

• (A bit tricky to verify in Mathematic due to jump in ArcTan[]..)

Exercise 1.6: Gyrator (difficult)

- A 'Gyrator' can mimic inductive behaviour, while using only resistors, capacitors and amplifiers
- Consider the following circuit:

- **Calculate** the input impedance $Z_{in} = U_{in}/I_{in}$ of the circuit
 - (Use Kirchhoff's law at the input node and node a)
- For frequencies < $1/C R_L$, the denominator can be neglected.
- Compare the result to an inductor in series with R_L
- Simulate.
 - Note that R should be larger than R_L (what happens for R=R_L?)
 - Plot i_{in}.
 - Add another capacitor in series to produce a resonant circuit.

Mathematica:

- EQin = iin =: $(vin va) \le C + \frac{(vin vb)}{RL} / . vb \rightarrow va;$ EQa = $(vin - va) \le C =: va / R;$
- Eliminate[{EQin, EQa}, va] // Simplify
- : iin (RL + C R RL s) == vin + C RL s vin
- sol = Solve[%, iin] // First $\left\{ \operatorname{iin} \rightarrow \frac{\operatorname{vin} + \operatorname{C} \operatorname{RL} \operatorname{s} \operatorname{vin}}{\operatorname{RL} (1 + \operatorname{C} \operatorname{R} \operatorname{s})} \right\}$

$$\frac{\text{Zgyrator}[s_{-}]}{\text{in}} = \frac{\text{vin}}{\text{in}} / \cdot \text{sol} / / \text{Simplify}$$

$$\frac{\text{RL} + \text{CRRLs}}{1 + \text{CRLs}}$$

© P. Fischer, ZITI, Uni Heidelberg Page 21