Exercise 1: Thévenin Equivalent \& RC-Circuits

Prof. Dr. P. Fischer
Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

Recommendations

- I strongly recommend to use a mathematical program (Mathematica, Maple, SageMath,..) to solve the exercises
- For transfer functions, inspect each result:
- What happens for $\omega \rightarrow 0, \infty$?
-What happens if component values go to 0 or ∞ ?

Exercise 1.0

- Derive the expressions for the series and parallel connection of capacitors using
- Charge conservation
- Complex impedance \& Kirchhoff's law

Solution 1.0

1. Charge conservation:

$$
V \times C_{1}+V \times C_{2}=Q_{1}+Q_{2}=Q_{p a r}=V \times C_{p a r} \rightarrow C_{1}+C_{2}=C_{p a r}
$$

2. Kirchhoff \& complex impedance:

$$
\mathrm{VsC} \mathrm{C}_{1}+\mathrm{VsC}_{2}=\mathrm{i}_{1}+\mathrm{i}_{2}=\mathrm{i}_{\mathrm{par}}=\mathrm{VsC}_{\mathrm{par}} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}=\mathrm{C}_{\mathrm{par}}
$$

Solution 1.0

1. Charge conservation:

Note: no charge can 'escape' the middle node, so that $Q_{1}=Q_{2}=Q_{\text {ser }}$

$$
\begin{aligned}
& V=V_{1}+V_{2}=Q_{1} / C_{1}+Q_{2} / C_{2}=Q / C_{1}+Q / C_{2}=Q / C_{\text {ser }} \\
& \rightarrow 1 / C_{1}+1 / C_{2}=1 / C_{\text {ser }}
\end{aligned}
$$

2. Kirchhoff \& complex impedance:

$$
\begin{aligned}
& \mathrm{V}_{1} \mathrm{sC}_{1}=\mathrm{V}_{2} \mathrm{sC}_{2} \text { and } \mathrm{V}_{1}+\mathrm{V}_{2}=\mathrm{V} \quad \rightarrow \quad \mathrm{~V}_{1}=\mathrm{VC}_{2} /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \\
& \rightarrow \mathrm{i}_{1}=\mathrm{V}_{1} \mathrm{sC}_{1}=\mathrm{VsC}_{1} \mathrm{C}_{2} /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \\
& \rightarrow \mathrm{C}_{\text {ser }}=\mathrm{i} /(\mathrm{Vs})=\mathrm{i}_{1} /(\mathrm{Vs})=\mathrm{C}_{1} \mathrm{C}_{2} /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)
\end{aligned}
$$

Exercise 1.1

- Derive the Thévenin Equivalent for the following circuit:

- Try two different methods:
- Use the Open/Short method with Kirchhoff's rules
- Convert the I-source part to a voltage source first...

Solution 1.1 - Kirchhoff

1. Short circuit current:

- EQ1: $1 \mathrm{~A}+\mathrm{v}_{1} / 5 \Omega+\mathrm{v}_{2} / 2 \Omega=0$
- EQ2: $\mathrm{v}_{2}=\mathrm{v}_{1}+3 \mathrm{~V}$

- $\rightarrow \mathrm{v}_{2}=-4 / 7 \mathrm{~V}$
- $\rightarrow I_{\text {short }}=-2 / 7 \mathrm{~A}$

2. Open circuit voltage:

- EQ1: $1 A+v_{1} / 5 \Omega=0$
- EQ2: $\mathrm{v}_{2}=\mathrm{v}_{1}+3 \mathrm{~V}$

$$
\begin{aligned}
& \text { - } \rightarrow \mathrm{V}_{1}=-5 \mathrm{~V} \\
& \text { - } \rightarrow \mathrm{v}_{2}=\mathrm{V}_{\text {open }}=-2 \mathrm{~V}
\end{aligned}
$$

- Source: $\mathrm{V}_{0}=\mathrm{V}_{\text {open }}=-2 \mathrm{~V}, \mathrm{R}_{\mathrm{V}}=\mathrm{V}_{0} / I_{\text {short }}=7 \Omega$

Solution 1.1 - Thévenin Transformations

1. Convert the current source to a voltage source:

2. Use this in the circuit:

Exercise 1.2

- What is the Thévenin Equivalent of the following circuit?

- Use two methods to find the result:
- parallel / series connection of resistors and your knowledge about the voltage divider
- short/open method

Solution 1.2

- Parallel-Series Connection, Voltage Divider:

Solution 1.2

- Open: Vopen = 1V

Short:

$$
\begin{aligned}
& \text { Rtotal }=2 \Omega+2 / 3 \Omega=8 / 3 \Omega \\
& \text { Itotal }=2 \mathrm{~V} / \text { Rtotal }=3 / 4 \mathrm{~A} \\
& \text { Ishort }=2 / 3 \text { Itotal }=1 / 2 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
\text { Zin } & =\text { Vopen / Ishort } \\
& =1 \mathrm{~V} / 1 / 2 \mathrm{~A} \\
& =2 \Omega
\end{aligned}
$$

Exercise 1.3

- A voltage source with voltage V_{0} and output resistance R_{0} is loaded by a resistor R_{L} :

- What is the output voltage $\mathrm{V}_{\text {out }}$?
- Which current flows in R_{L} ?
- What power is dissipated in R_{L} ?
- Check that noting is dissipated for $R_{L}=0$ and $R_{L} \rightarrow \infty$
- For which value of R_{L} is the dissipation maximized?
-What is the dissipation?

Solution 1.3

```
ln[29]:= Vout = V0 }\frac{RL}{R0 + RL}
In[30]:= Iout = Vout
Out[30]=}=\frac{V0}{R0 + RL
ln[31]:= Pout = Vout Iout
Out[31]=}\frac{RL V0 2}{(R0+RL\mp@subsup{)}{}{2}
In[38]:= Table[Limit[Pout, RL }->\textrm{x}],{x,{0,\infty}}
Out[38]={0, 0}
    In[39]:= Solve[D[Pout, RL] == 0, RL] // First
```



```
ln[40]= Pout /. %
Out[40]=}=\frac{V\mp@subsup{0}{}{2}}{4R0
```


Exercise 1.4

- Derive the Transfer Function of this circuit:

- Use 3 different approaches:
- Treat the circuit directly (using Kirchhoff's rule)
- Consider it as a voltage divider of two Impedances. Use R_{1} for Z_{1} and the parallel connection of R_{2} and C_{2} for Z_{2}
- Replace the (resistive) voltage divider by its Thévenin equivalent and then add the capacitor
- Make a Bode Plot
- Describe the difference to the normal Low Pass Filter

Solution 1.4

Direct Treatment:

$$
E Q=\frac{\text { Vin }- \text { Vout }}{R 1}=\text { Vout s C2 }+\frac{\text { Vout }}{R 2} ;
$$

Solve[EQ, Vout] // First

$$
\begin{aligned}
& \left\{\text { Vout } \rightarrow \frac{\text { R2 Vin }}{\text { R1 + R2 + C2 R1 R2 s }}\right\} \\
& \text { Hdirect }=\frac{\text { Vout }}{\text { Vin }} / \% \\
& \frac{\text { R2 }}{\text { R1 + R2 + C2 R1 R2 s }}
\end{aligned}
$$

Voltage Divider:

$$
\begin{aligned}
& \text { Hdiv }=\frac{\mathrm{z} 2}{\mathrm{z} 1+\mathrm{z} 2} / \cdot\left\{\mathrm{z} 1 \rightarrow \mathrm{R} 1, \mathrm{z} 2 \rightarrow\left(\frac{1}{\mathrm{R} 2}+\mathrm{s} \mathrm{C2}\right)^{-1}\right\} / / \text { Simplify } \\
& \frac{\mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2+\mathrm{C} 2 \mathrm{R} 1 \mathrm{R} 2 \mathrm{~s}}
\end{aligned}
$$

Hdirect == Hdiv

True

Solution 1.4

Hthenevin $=\frac{g}{1+s R R C 2} / \cdot\left\{g \rightarrow \frac{R 2}{R 1+R 2}, R R \rightarrow\left(\frac{1}{R 1}+\frac{1}{R 2}\right)^{-1}\right\} / /$ Simplify
$\frac{\mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2+\mathrm{C} 2 \mathrm{R} 1 \mathrm{R} 2 \mathrm{~s}}$

Solution 1.4

- Compared to the 'simple' Low-Pass:
- The signal is attenuated by $R_{1} /\left(R_{1}+R_{2}\right)$
- The time constant is lowered (i.e. the corner frequency is raised)
- Plot for $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{C}_{2}=1: \quad$ нLP $=\sqrt{\frac{1}{1+\dot{\mathrm{i} \omega \mathrm{RC}}} \text { conjugate }\left[\frac{1}{1+\dot{\mathrm{i} \omega \mathrm{RC}}}\right]} / \cdot\{\mathrm{RC} \rightarrow 1\}$

Exercise 1.5: Notch Filter

- Consider the following circuit made of cascaded High- and Low Pass stages:
- The resistors at the output just add the signals at (a) and (b)

- What is the output signal at the corner frequency?
- Explain this by comparing amplitudes and phases at (a) and (b)

Solution 1.5

\$Assumptions $=\omega>0 \& \& R C>0 ; H L P=\frac{1}{1+\dot{\mathrm{I}} \omega \mathrm{RC}} ; H H P=\frac{\dot{\mathrm{I}} \omega \mathrm{RC}}{1+\dot{\mathrm{I}} \omega \mathrm{RC}}$;
vout $=\mathrm{Vb}+\frac{1}{2}(\mathrm{Va}-\mathrm{Vb}) / /$ Simplify (* Output is averge of Va and $\mathrm{Vb} *$)

```
Va+Vb
LogLinearPlot \([\mathrm{dB}[\mathrm{HMag}],\{\omega, 0.1,10\}\)
\(\quad\), GridLines \(\rightarrow\{\{1\},\{0\}\}\), PlotRange \(\rightarrow\{-100,5\}\), Filling \(\rightarrow-100]\)
```

$H=\frac{\text { HLP HLP }+ \text { HHP HHP }}{2} / /$ Simplify
$\frac{-1+\mathrm{RC}^{2} \omega^{2}}{2(-i+\mathrm{RC} \omega)^{2}}$
HMag $=\mathrm{H}$ Conjugate $[\mathrm{H}] / . \mathrm{RC} \rightarrow 1 / /$ FullSimplify $\frac{\left(-1+\omega^{2}\right)^{2}}{4\left(1+\omega^{2}\right)^{2}}$

- At the corner frequency, the signal is fully stopped!
- This is because the phases of the two signals are $\pm 90^{\circ}$, i.e. the signals are complementary
- (A bit tricky to verify in Mathematic due to jump in $\operatorname{Arc} \operatorname{Tan}[] .$.

Exercise 1.6: Gyrator (difficult)

- A 'Gyrator' can mimic inductive behaviour, while using only resistors, capacitors and amplifiers
- Consider the following circuit:

the triangle is a voltage amplifier
with gain=1 ('follower'). It forces node b to the potential of node a
- Calculate the input impedance $\mathrm{Z}_{\text {in }}=\mathrm{U}_{\text {in }} / \mathrm{l}_{\text {in }}$ of the circuit - (Use Kirchhoff's law at the input node and node a)
- For frequencies < 1/C R_{L}, the denominator can be neglected.
- Compare the result to an inductor in series with R_{L}
- Simulate.
- Note that R should be larger than R_{L} (what happens for $R=R_{L}$?)
- Plot $\mathrm{i}_{\text {in }}$.
- Add another capacitor in series to produce a resonant circuit.

Solution 1.6

- Mathematica:

EQin = iin == (vin -va)sc $+\frac{(v i n-v b)}{R L} / \cdot v b \rightarrow v a ;$
EQa = (vin-va) sC == va/R;
Eliminate[\{EQin, EQa\}, va] // Simplify
iin (RL + CRRLs) == vin $+C$ RLsvin
sol = Solve[\%, iin] // First
$\left\{\operatorname{inn} \rightarrow \frac{\text { vin }+ \text { CRLsvin }}{R L(1+C R s)}\right\}$
Zgyrator $\left[s_{-}\right]=\frac{\text { vin }}{\text { iin }} /$. sol // Simplify
$\frac{R L+C R R L s}{1+C R L s}$

