

Exercise: Starting a Simulation

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

Starting the Simulator

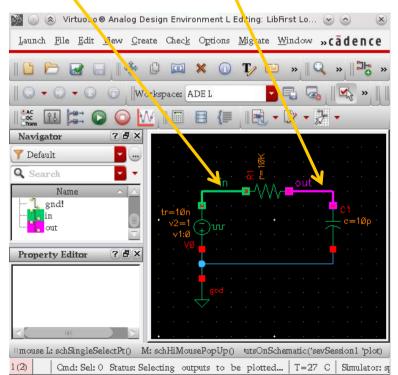
ruprecht-karls-UNIVERSITÄT

HEIDELBERG

In an open schematic, start the simulator with

Select Type of Simulation

- Open the panel
 - By pressing the to button or
 - In Analyses \rightarrow Choose Menu
- Choose the analysis you need (we will only use 'tran', 'dc', 'ac')
- Provide the parameters required by the analysis


Press ok

× 💿 🗞	Choosing Ana	alyses V	'irtuoso® An	
Analysis	🥑 tran	🔘 dc	🔘 ac	🔘 naise
	🔾 xf	🔍 sens	🔍 dcmatch	🔘 stb
	\odot_{Pz}	🔾 sp	🔾 envlp	© pss
	🔾 pac	🔾 pstb	🔾 pnoise	🔘 pxf
	O psp	🔾 qpss	🔾 qpac	🔘 qpnaise
	🔾 qpxf	🔘 qpsp	🔾 hb	🔘 hbac
	🔘 hbnaise	🔘 hbsp		
		Fransient A	Analysis	
Stop Time	2ų j			
Accuracy	Defaults (errp	reset)		
🕑 conse	ervative 📃 m	oderate [🔄 liberal	
🔲 Transie	nt Noise			
📃 Dynami	ic Parameter			
Enabled 📃				Options
	OK	Салсе	l Default	s Apply Help

Select Signals to be Plotted

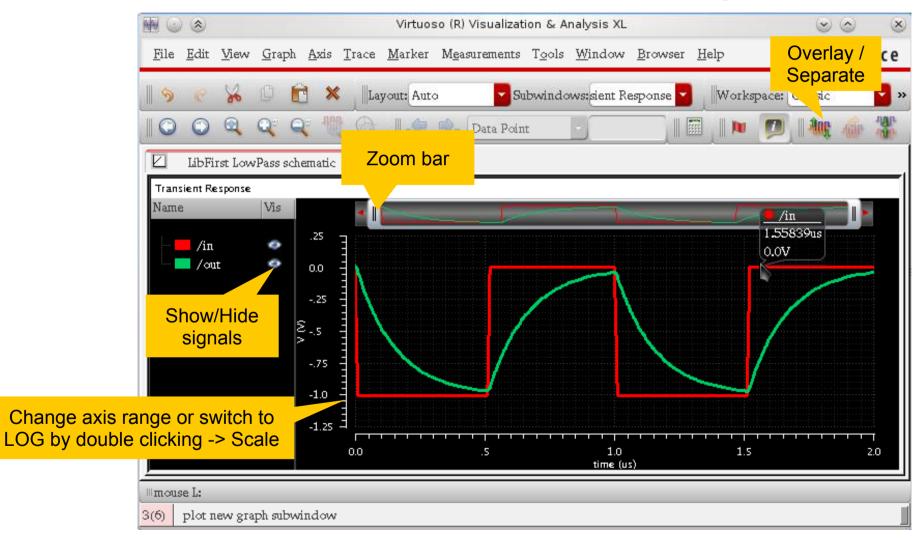
- In simulator window
 - Select Outputs \rightarrow To be Plotted \rightarrow Select on Schematic
- Select the nets (they are highlighted with different colors) to show voltages
- Select pins to show currents
- End with ESC (important!)

00	nalog Design Environment (1) - PeFi_Play_UMC018 vorlesun 🕑 🚫	×
<u>aunch Se</u> ssion Set <u>u</u>	<u>up A</u> nalyses <u>V</u> ariables <u>O</u> utputs <u>S</u> imulation <u>R</u> esults »cāder	۱ce
💾 🔊 🦵 27		
C () - 1 - 1		
esign Variables	Analyses ? 🖻 🛛	OAC.
Name Value	Type Enable Arguments 1 tran ✓ 0 1u conservative	ODC
C1 10p		ŶJ
R 10K		10-
C2 9*C1		1-00-
		×
	Outputs ? 🗗 🗙	
	Name/Signal/Expr /alu Plot Save Save Options	-
	1 vout 🕜 🔲 allv	0
	2 vin 🗹 🔽 🔤 allv 🥿	W
		-
	[7	
	Plot after simulation: Auto 🔽 Plotting mode: Replace 🔽	
• nouse L:	Plot after simulation: Auto Plotting mode: Replace	R:

Signals are listed in the lower right panel of the sim. window

Starting the Simulation

- Press or Simulation → Netlist and Run
- A log file shows up
 - If your run fails:
 - Check the log file
 - (Re-open it with Simulation → Output Log)
 - Some common reasons for failure:
 - Schematic has been changed, but not checked & saved (F8)
 - Device parameters (resistor value..) are missing or wrong
 - Design variables (see later) have not been set
 - Circuit has severe errors (shorts..)


			10.0.0	- 1					
tran: tran: tran: tran: tran: tran: tran: tran: tran: tran: tran: tran: tran: dumber of initial co intrinsic cotal time	time = time = time = time = time = time = time = time = time = accept ndition tran an : require ulated	752.4 ns 854.1 ns 958.3 ns 1.055 us 1.153 us 1.26 us 1.353 us 1.46 us 1.555 us 1.65 us 1.752 us 1.854 us 1.958 us ed tran step n solution t nalysis time red for tran : CPU = 452. mory used =	(77.8 (82.5 (87.6 (92.7 (97.9 s = ime: CP analys 028 ms,	*), *), *), *), *), *), *), *), *), *),	step step step step step step step step	= = = = = = = = = 26 e1 L m	20 ns 5.728 7.825 10.72 14.56 19.74 8 .apsed s, el: CPU =	ns ns ns ns ns ns ns ns ns ns ns 2.	d 01
inalTime(lesignPara primitives	P: writ mVals: : writ:	ting operati writing net ing primitiv subcircuits	ng poin list pa es to r	t ir rame awfi	nforma eters ile.	ati to	on to rawf:	raw ile.	f

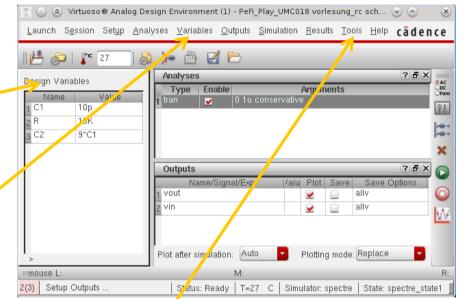
•

4

Look at the Results

The waveform viewer shows all selected signals:

Showing More / Other Signals


- You can also add signals after the simulation using Results → Direct Plot → …
- In this menu, you can select for instance AC Magnitude and Phase
 - As usual, you must then select the net and stop with ESC.

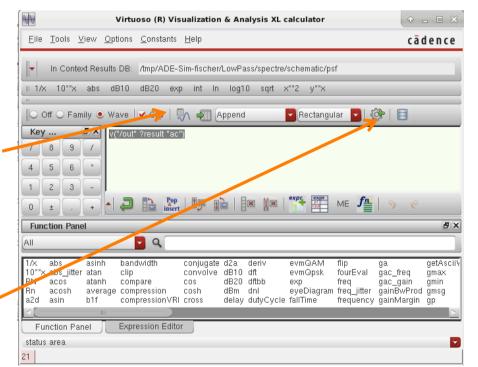
ariables <u>O</u> utputs <u>S</u> imulation	<u>R</u> esults <u>T</u> ools Calibre <u>H</u> elp					
a 🛛 🍋	Plot <u>O</u> utputs					
	Direct <u>P</u> lot >					
Main Fo <u>r</u> m	P <u>r</u> int					
<u>T</u> ransient Signal	Annotate					
Transient Min <u>u</u> s DC	Vector 🕨					
Transient <u>S</u> um	Circuit <u>C</u> onditions <u>V</u> iolations Display Reliability Data					
Transient Diff <u>e</u> rence						
AC <u>M</u> agnitude						
AC dB <u>1</u> 0	· · · · · · · · · · · · · · · · · · ·					
AC dB <u>2</u> 0	<u>S</u> ave					
AC Phase	S <u>e</u> lect					
	<u>D</u> elete					
AC Gain & Phase	Printing/Plotting Options					

Environment (1) - CCS2013 LowPass schematic

Adding Design Variables

- You can set parameters to symbolic values ('CF', 'FREQ')
 - These 'design variables' do not need to be 'declared'
- You must then
 - Add the 'design variables' by hand in the lower left window or
 - Use the Variables → Copy from CellView command

- You can then change the Design Variables in the simulation window and just re-run the simulation (Simulation → Run) with no need to make a new netlist
- You can also run several simulations with varying values in a Tools → Parametric Analysis


(Copying Design Variables to the Cellview)

- You can copy the design variables and their values to the cell view with Variables → Copy to Cellview
 - This helps you to remember the best values..

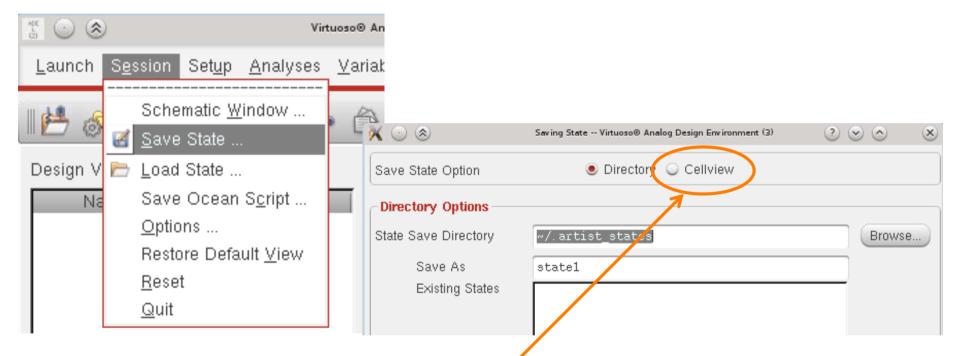
- Caveat:
 - If you delete a variable in a schematic component, so that it is not used any more, it may still be 'saved' in the cell view and simulation will complain.
 - In such a case you have to delete the variable in the simulation window and copy the new set to the cellview

The WaveForm Calculator

- For more complex analysis, you can open the Waveform Calculator under Tools → Calculator
 - Best select the wave you want to analyze first
- You can assemble expressions graphically (using RPN)
- Plot the result once or
- Send the expression to the outputs window so that it is evaluated every time you run a new simulation

Outputs					
Name/Signal/Expr	Value	Plot			
1 out		V			
2 deriv(v("/out" ?result "ac"))		V			

Tools


-

Window

Calculator

Saving you Simulation Settings

Before you leave, you can save all settings, results... under Session → Save State

- You can save to a file or to the cellview (view 'spectre_state')
 - Better save to the cellview, so that everything is in the library

ruprecht-karls. UNIVERSITÄT HEIDELBERG

EXERCISES

Exercise 1: High Pass – AC analysis

- Use the HighPass circuit from the previous exercise
 - voltage source, ground, R = 1k, C=1n
 - Make sure the voltage source has 'AC Magnitude' set to 1
- Estimate the corner frequency of your circuit
- Chose an AC analysis with frequency span 2-3 orders of magnitude around the corner.
- Plot the Magnitude of the output
- Check that the -3dB point is **exactly** what you calculate!
- Change component values, predict the effect and simulate.
- Make the circuit more complicated (more Rs and Cs)

Exercise 2: High Pass & Rectangular Pulse

- Now use a rectangular pulse generator (vpulse)
 - Chose the frequency much slower than the RC time
 - How does the output waveform look like ?
 - When has the signal decreased to 1/e of the input step?
 - Is this what you expect from the component values?
 - Double the resistor and check what happens!

Exercise 3: High Pass & Sine Input

- Replace the rectangular generator by a sine wave generator ('vsin')
 - Set the *delay time* and *offset* to 0, the *amplitude* to 1V
 - Calculate the corner frequency (in Hertz!)
 - Check the output for a frequency ~10 x lower or ~10x higher than the corner
 - What is the output amplitude *exactly* at the corner frequency?
 - What is the phase shift between input and output at the corner frequency?
 - Try to run a parametric analysis, changing the value of the capacitor (or the resistor)