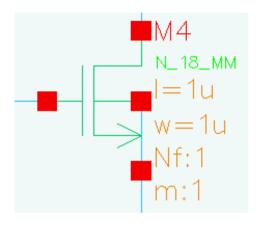


Exercise:The MOS Transistor

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg



Exercise 1: NMOS in Linear Region

- Use an NMOS transistor of type N_18_MM from library UMC_18_CMOS with W=L=1µm
- Connect
 - source and bulk to ground
 - the gate to 2 V

- Extract the resistivity of the channel
- Double W or L and simulate & extract again.
 - Are the results as expected ? Compare W=L=1μ and W=L=2μ!
- Now sweep the gate voltage from 0.6 V to 2 V. Explain!
- Now sweep the *drain* voltage from 0V to 1V. Verify the saturation point for a few gate voltages.
- What happens if you sweep the drain voltage from -1V on?

Exercise 2: Transfer Charact. & Transconductance

- For an NMOS of W=L=1 μ m with V_{BS} = 0, keep the drain at 1.8 V and sweep the gate voltage from 0 to 1.8 V. This is the *transfer characteristic* of the MOS.
 - Observe the drain current
 - Plot the square root of the current. Do you find a straight line as expected?
 - Plot the current in log scale. Can you see the sub-threshold region?
 - What is the transconductance at V_{GS} = 1V (make a derivative!)?
- Make a parametric sweep changing W from 0.24µm to 2µm
 - Is the current proportional to W?
- Repeat this for a L-sweep (start with 180nm)
- Plot the transfer curve for two different values of V_{BS}, for instance 0 V and -2 V

Exercise 3: Output Characteristic, Saturation

- Now plot the output characteristic, i.e. I_D as a function of V_{DS} for a fixed V_{GS} (for instance $V_{GS} = 1.0 \text{ V}$)
 - Can you see the linear region and the saturated region?
- Extract the output resistance for instance for V_{GS} =1.8V and V_{DS} =1.8V (derivative!).
- Plot the output characteristic for V_{GS} =0..1.8V in 0.2V steps
 - Observe how the current changes
 - Observe how the saturation voltage changes
 - Observe how the output resistance changes (Early voltage?)
- Now use two NMOS with different W (for instance 0.5μm and 2μm).
 - Search for gate voltages so that the currents for a given V_{DS} (for instance for 1.8 V) are similar.
 - Compare the output characteristics & saturation voltages

Exercise 4: PMOS

- Simulate transfer and output characteristic for a PMOS
 - Note that the source of the transistor is now ,on top'
 - Gate and drain must be negative with respect to source
- Simulate in parallel a NMOS of the same size.
 - Plot the drain current of NMOS and PMOS simultaneously.
 - How big is the difference?