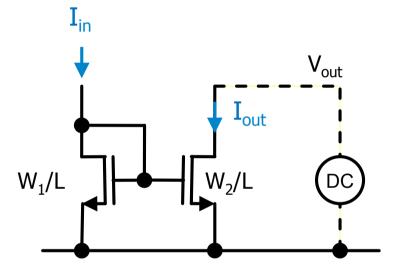

Exercise: Current Mirrors

Prof. Dr. P. Fischer

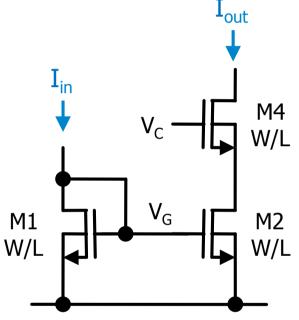
Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

Exercise 1: Dynamic Regulation


- Draw a diode connected NMOS
- Connect a large ,extra' capacitance to the gate (some pF) with an *initial condition* of 0 V
 - Use a transistor 'n_18_mm' from the UMC library 'UMC_018_CMOS'. Connect bulk and source.
 - Set the initial condition ('IC') in the properties of the capacitor
- Send a small current I_{in} (nA-µA) into the ,diode'
- Perform a transient simulation

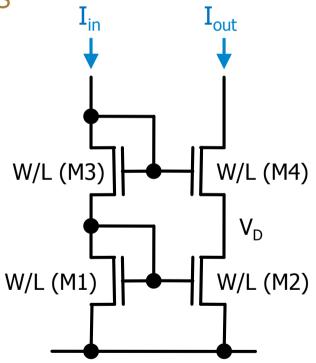
- Observe the Input = Gate = Drain Voltage
- Use different initial conditions (0...1.8V, Parametric sweep!)
- Understand how the equilibrium point is reached!
- Vary I_{in}!

Exercise 2: A First Mirror


• Draw the following *current mirror*, with $W_1 = W_2 = 1 \mu m$. Use for instance L = 0.5 μm and $I_{in} = 10 \mu A$

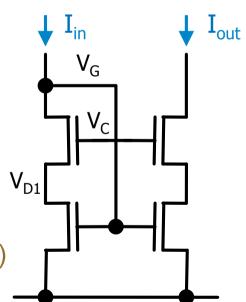
- Sweep the output voltage V_{out} and observe the current I_{out}.
 - When is I_{out} = I_{in} *exactly*? Why?
 - Try another input current!
 - Change W₂!
- For fixed I_{in}, W₁, W₂, vary L (same in both MOS).
 - Explain what you see!

Exercise 3: A Better Mirror


- The output current varies with V_{out} (i.e. the output resistance is not infinite) due to the Early Effect in M2.
- Try the following circuit:
 - Connect bulk and source in all MOS
 - Start with $V_c = 1.2V$
 - Use I_{in} = 1uA
- Sweep V_{out}
 - How is the output resistance now? (You may simulate the ,simple' mirror of the previous exercise in parallel for comparison)

- Calculate the small signal output resistance!
 - You only need to consider M2 and M4 (because V_G is constant)
- Vary V_C (from 0V to 1.8V) and see what happens
 - What is the 'ideal' V_C ?

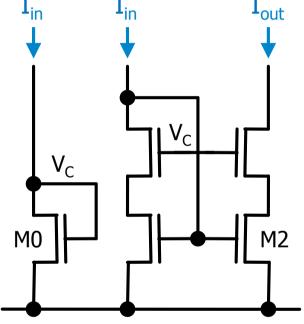
Exercise 4: A Mirror with Better Matching


- Unfortunately, the previous circuit does NOT reproduce I_{in} exactly. Why?
- Try this circuit (which does not need V_C and more):
 - Connect bulk and source in each MOS
 - It is called the ,stacked mirror'
- Sweep V_{out}
 - Do currents match?
 - What is r_{out} ?
 - Where is the saturation ?

• What is the drain voltage V_D of M2? Is that optimal?

Exercise 5: The Low Voltage Mirror

- In the stacked mirror of the previous exercise, the drain voltage V_D of the current source M2 is fixed by the diode connection of M1.
- This is simple, but provides a too high voltage (by ~V_T !)
- The following circuit connects the diode differently:
 - Understand that the gate voltage V_G still stabilizes to the 'correct' level!
 - We now need to find $V_{\rm C}$
 - Sweep V_C from 0.4 to 1.4V in steps of 0.2V
 - What is a good choice?
 - Why do very low voltages fail (check V_G !)
 - What happens at high voltages? Why? (this is tricky to understand... Look at V_{D1}...)
 - Note that the 'best' $V_{\rm C}$ depends in $I_{\rm in}$

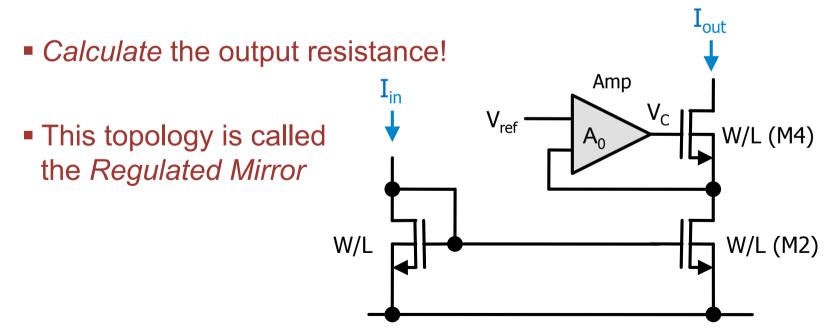


RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

Exercise 6: The Low Voltage Mirror

- The required optimal cascode voltage V_C can be generated automatically by a diode connected MOS M0 with different geometry than the others: $I_{in} \qquad I_{in} \qquad I_{out} \qquad I_{out} \qquad I_{in} \qquad I_{out} \qquad I_{out} \qquad I_{in} \qquad I_{out} \qquad I_{out} \qquad I_{in} \qquad I_{out} \qquad I_{in} \qquad I_{out} \qquad I_{in} \qquad I_{in} \qquad I_{out} \qquad I_{in} \qquad I_{in$
- We assume that we have a second input current I_{in} available (boths I_{in}s are equal)


- Calculate k so that M2 is just saturated.
 - Use the *large signal* model in strong inversion with no Early effect
- Simulate the circuit

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

Exercise 7: An *Even* Better Mirror

- The key trick is obviously to keep the drain voltage of M2 very constant irrespective of the output voltage.
- This can be done with an active circuit (with an amplifier):
 - Amp amplifies the difference of the two input voltages by A₀
 - Where is the positive/negative input for table operation?
 - Simulate the circuit. Use a voltage controlled voltage source vcvs from the analogLib for Amp with A₀=1000

