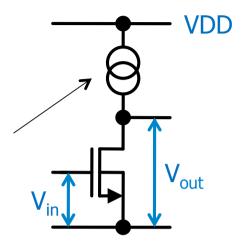
RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Exercise: Gain Stage


Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

1. Basic Gain Stage

- Implement a NMOS gain stage.
 - Use a NMOS with W/L = $1\mu/0.2\mu$
 - Use a PMOS of same dimension as a current source
 - Bias the PMOS with a mirror to 10µA
 - Operate at VDD = 1.8 V
- Sweep V_{in} and observe V_{out}
- What is the largest gain (derivative!) ?
- Change
 - the bias current
 - W of the input transistor
 - L of the PMOS

and observe what happens. Explain!

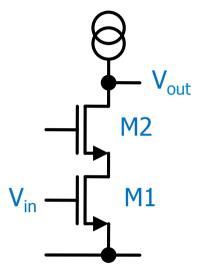
RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

2. Comparing Gain to Theory

- In the previous circuit, fix an operation point in the high gain region (i.e. pick a V_{in} and note the corresponding V_{out})
- Determine the gain by calculating the derivative of the transfer function
- Compare this to an AC sweep at the operation point
- Now extract
 - g_m of the NMOS (at the operation point!)
 - r_{ds} of NMOS and PMOS (at the operation point!)
- Calculate the gain. Does it match?

3. Bandwidth

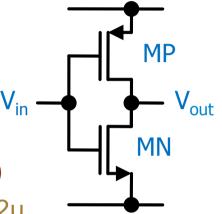
- Load the gain stage with a capacitor (1 pF)
- Observe the bandwidth
- Modify the load capacitor
 - Is bandwidth inversely proportional to C_L ?
- Modify I_D
 - Make a Parametric Sweep with 2-3 values (1µA, 10µA, 100µA)
 - Do you find what you expect?


3.b Effect of Load Dimension

- Use a simple gain stage with an NMOS and a PMOS (mirror) load
- Introduce a self-bias (automatic setting of the operation point, see lecture slides) to V_{in} = V_{out} with
 - a large (1 G Ω) resistor between input and output and
 - a large (1 F) capacitor to ac couple the input signal
- Check with an AC sweep that the circuit works
 - A DC sweep will NOT work with this same circuit! (why?)
- At constant bias, change L of the load (and the mirror) and see how the (dc) gain varies
- Repeat this for a longer input NMOS

- Set up a cascoded gain stage
 - Use W/L = 5 μ / 0.2 μ for all 4 MOS
 - Use I_{bias} = 10 uA
 - Use a stacked mirror on the PMOS side
 - Use a 'safe' cascode voltage for the NMOS
 - Make a DC sweep
- Use the self bias presented in the lecture to set a good operation point
 - First check with the DC sweep that v_{out} = v_{in} is a good operation point
- What is the gain?

5. Transfer Function of the Cascoded Gain Stage


- Calculate the transfer function of the cascoded gain stage
 - Assume an ideal load (current source)
 - Consider a load capacitor C_L
- What are
 - the DC gain?
 - the unity gain bandwidth?

- Compare to the case with no cascode
- Use the simulation from Exercise 4 to verify your finding

6. The Inverter

- The PMOS 'load' in the gain stage supplies a more or less constant current
- In the CMOS Inverter shown, the PMOS is switched with the input signal, it acts as the NMOS
- Simulate the DC transfer function V_{out}(V_{in})
 - For instance $L_N = L_N = 0.2\mu$, $W_N = 1\mu$, $W_P = 2\mu$
 - What is different from the normal gain stage ?
 - What is the maximum gain ?
- Use a small signal analysis to find the gain

