
Tools SS 2022
Introduction to Docker

Florian Beenen

��������	
������
��� ����������

22.06.2022

Contents I
1. Introduction

1.1. What are Containers?
1.2. What is Docker?

2. Using Docker
2.1. Basic Commands
2.2. Simple Ubuntu Container
2.3. Working with Containers
2.4. Using Volumes
2.5. Writing Dockerfiles
2.6. Networks
2.7. Security

3. Exercises
3.1. Hello World
3.2. Running Interactive Commands
3.3. Writing a Dockerfile

Florian Beenen Introduction to Docker 22.06.2022 1/36

Introduction

Introduction

Florian Beenen Introduction to Docker 22.06.2022 2/36

Introduction
What are Containers?

What are Containers?
To understand what Docker can do, we must first understand what Containers are...

I Containers provide an isolated environment to execute programs.
I Containers isolate the application (and its runtime environment) from the infrastructure.
I Very similar to Virtual Machines (VMs): You can run multiple virtual operating systems on a

host that are separated from each other.
I Yet different that VMs: A container shares the "operating system" with the host but may

have its own separated network, compute resources, storage and execution environment.

Source: https://www.docker.com/resources/what-container/

Florian Beenen Introduction to Docker 22.06.2022 3/36

https://www.docker.com/resources/what-container/

Introduction
What are Containers?

Why use Containers?

I Containers can be set up and torn down much faster than VMs.
I One application = one container!
I Example: Compiler (gcc) in Container. For each compilation job, launch a Container, let it do

its thing, tear down Container.
I Containers should (ideally) be stateless: A "clean" execution environment is created upon

start and the Container should not have any side effects.
I Containers are portable: They bundle everything they need so they can be moved/executed

on another host without issues (like VMs – with the same restrictions).
I Dependencies of programs can be managed in a fine grained way:

I App A needs a library with version 1.2
I App B requires version 1.3 of this library.
I Libraries are not spread across system folders but are inside the Container!

Florian Beenen Introduction to Docker 22.06.2022 4/36

Introduction
What are Containers?

Applications of Containers

I As "VM Lite"
I Long-living Containers that contain independent services.
I Examples: Database-Servers, Webservers, Loadbalancers.
I Same approach as deploying VMs but with less overhead.

I Microservice-based applications made out of multiple Containers
I Applications are developed in a distributed fashion.
I Applications use numerous micro-services that can be scaled out individually.

I As "job environment" for scheduled tasks
I Used by build tools like Jenkins, GitLab, ...
I Task: Create Container, execute a script in a defined environment, deliver an artifact, destroy

Container.

Florian Beenen Introduction to Docker 22.06.2022 5/36

Introduction
What is Docker?

What is Docker

I Docker is a platform/software to run Containers!
I Docker is used to manage Containers:

I Start/Stop Container
I Access Container (e. g. run a shell)
I Attach networking to Containers
I Manage storage shares between host and Containers

I Docker provides means to define/create the "working
environment" of a Container (å this is called an Image).

Florian Beenen Introduction to Docker 22.06.2022 6/36

Introduction
What is Docker?

What are Images
I An Image is the bundle of software and configurations that are used as base for a Container.
I Container vs. Image?

I A Container is the instance of an Image!
I Multiple Containers may be started from the same Image and are independent.

I What makes up an Image is defined in a Dockerfile
I The Dockerfile can be regarded as a script to compile the Image.
I If the Dockerfile is built, the Image can be used to start Containers.
I You can share the Image with others via a Registry (e. g. https://hub.docker.com/).

Source: https://medium.com/platformer-blog/practical-guide-on-writing-a-dockerfile-for-your-application-89376f88b3b5

Florian Beenen Introduction to Docker 22.06.2022 7/36

https://hub.docker.com/
https://medium.com/platformer-blog/practical-guide-on-writing-a-dockerfile-for-your-application-89376f88b3b5

Introduction
What is Docker?

Find Images on the Hub

Source: https://hub.docker.com/_/python

Florian Beenen Introduction to Docker 22.06.2022 8/36

https://hub.docker.com/_/python

Using Docker

Using Docker

Florian Beenen Introduction to Docker 22.06.2022 9/36

Using Docker
Basic Commands

The Docker Daemon
I Docker is managed by the Docker daemon (å a system service).
I You can interact with the daemon by using the docker command.
I To do this, you need very high privileges (i. e. you need to be root effectively...).
I Basic commands

I docker images : Shows Images currently available on your machine
I docker ps : Shows running Containers

Florian Beenen Introduction to Docker 22.06.2022 10/36

Using Docker
Basic Commands

Showing Running Containers

Florian Beenen Introduction to Docker 22.06.2022 11/36

Using Docker
Basic Commands

Starting our first Container

I Remember: Docker Containers are meant to be shipped with everything they need to
execute...

I Our first Container launch will be a "hello world" example.
I For this purpose, the hello-world Image exists on the Hub.
I We run the Container by typing docker run hello-world

Florian Beenen Introduction to Docker 22.06.2022 12/36

Using Docker
Basic Commands

Starting our first Container (2)

1 u s e r@ s e r v e r : ~ $ docke r run h e l l o−wor ld
2 Unable to f i n d image ’ h e l l o−wor ld : l a t e s t ’ l o c a l l y
3 l a t e s t : P u l l i n g from l i b r a r y / h e l l o−wor ld
4 2db29710123e : Pu l l complete
5 Dige s t : sha256 :80 f31da1ac7b312ba29d65080fddf797dd76acfb870e677f390d5acba9741b17
6 Sta tu s : Downloaded newer image f o r h e l l o−wor ld : l a t e s t
7
8 He l l o from Docker !
9 This message shows tha t your i n s t a l l a t i o n appea r s to be work ing c o r r e c t l y .

10
11 To gene r a t e t h i s message , Docker took the f o l l o w i n g s t e p s :
12 1 . The Docker c l i e n t con tac t ed the Docker daemon .
13 2 . The Docker daemon p u l l e d the " h e l l o−wor ld " image from the Docker Hub .
14 (amd64)
15 3 . The Docker daemon c r e a t e d a new Con ta i n e r from tha t image which runs the
16 e x e c u t a b l e t ha t p roduces the output you a r e c u r r e n t l y r e a d i n g .
17 4 . The Docker daemon st reamed tha t output to the Docker c l i e n t , which s en t i t
18 to your t e rm i n a l .
19
20 To t r y someth ing more amb i t i ous , you can run an Ubuntu Con ta i n e r w i th :
21 $ docke r run − i t ubuntu bash

Florian Beenen Introduction to Docker 22.06.2022 13/36

Using Docker
Simple Ubuntu Container

Starting Ubuntu

I We want to experiment a little bit in a clean environment and therefore want to have a
Ubuntu Container.

I We launch the "default" Ubuntu Image which will be fetched from the Hub
I docker run -it ubuntu

I Why special options?
I -i gives us an interactive session (å attaches stdin).
I -t allocates a terminal for us, so we can type in commands.

I Result: root@cf62f1786c1a:/# (... and now...?)
I We operate as the root user inside the Container.
I The Container has a strange name (... so what?)

I We can now do whatever we want!

Florian Beenen Introduction to Docker 22.06.2022 14/36

Using Docker
Simple Ubuntu Container

Using Ubuntu

I Let’s go and install some software!
I Run apt update to load newest package lists
I Run apt install cowsay to install something funny...
I After installation run /usr/games/cowsay "Docker is the best"

1 root@965e4292f2be : /# / u s r /games/ cowsay "Docker i s the b e s t "
2 ____________________
3 < Docker i s the be s t >
4 −−−−−−−−−−−−−−−−−−−−
5 \ ^__^
6 \ (oo) _______
7 (__) \) \/\
8 ||−−−−w |
9 | | | |

Florian Beenen Introduction to Docker 22.06.2022 15/36

Using Docker
Simple Ubuntu Container

Using Ubuntu (2)

I This Ubuntu Image is extremely minimalistic!
I This is good to keep its size down (only 78MB).
I You need to install nearly everything manually.

I This is also good because you are forced to think about your dependencies!
I Remember: The Container is a throw-away instance!
I If you run exit, the session will terminate and the Container is stopped.
I Once the Container is stopped, you cannot access its data anymore.
I You cannot restart a stopped Container!

Florian Beenen Introduction to Docker 22.06.2022 16/36

Using Docker
Working with Containers

Working with Containers

I Every Container needs a primary process (å the bash process in our Ubuntu Container).
I This process needs to be blocking!
I If this process terminates or returns control, the Container terminates.
I In our example, we had a direct keyboard input to the primary process.
I If we want to "detach" the input and return to our host, we can use Ctrl + P Q .
I We can "re-attach" again by running docker attach <Container Name>.
I Note: This detach/re-attach thing is rarely the way to go. Only use this for the purpose

shown here...
I If you want to get a shell in a running Container, do this:

docker exec -it <Container-Name> /bin/bash.
I Hint: As <Container-Name> you may use either the name reported under docker ps or a

non-ambiguous prefix of the ID!

Florian Beenen Introduction to Docker 22.06.2022 17/36

Using Docker
Working with Containers

Working with Containers (2)

I Demonstration what happens when the primary process terminates:
I Just run docker run ubuntu.
I What happens? å Nothing?
I Wrong: Ubuntu Container is started, main process (implicit /bin/bash) is launched, no

commands there, process terminates, Container terminates.

Florian Beenen Introduction to Docker 22.06.2022 18/36

Using Docker
Working with Containers

Stopping Containers

I When you detach from a running Container or start Containers
in the background, docker ps still shows you that the
Container is up.

I You can stop the Container via the Docker Daemon by running
docker stop <Container-Name> (graceful shutdown).

I Most of the time I rather use
docker kill <Container-Name> ©.

Source: https://www.redbubble.com/de/i/sticker/Docker-t%C3%B6ten-von-Caldofran/38462159.EJUG5

Florian Beenen Introduction to Docker 22.06.2022 19/36

https://www.redbubble.com/de/i/sticker/Docker-t%C3%B6ten-von-Caldofran/38462159.EJUG5

Using Docker
Working with Containers

Cleaning up the Mess

I By default, Docker leaves the "junk" of stopped Containers on your machine.
I You may want to clean up the files of stopped Containers on a regular basis.
I I have a script that does this – I use this on every machine I have...

1 #!/ bin/bash
2 docker rm -v $(docker ps -a -q -f status = exited)
3 docker rm -v $(docker ps -a -q -f status = created)
4 docker rmi $(docker images -f " dangling =true" -q)

I docker rm removes the stopped Containers.
I docker rmi removes (unreferenced) Images.
I You can find out about your stopped Containers with docker ps -a.

Florian Beenen Introduction to Docker 22.06.2022 20/36

Using Docker
Using Volumes

Volumes

I Once you stop a Container, all its data is lost §.
I There are countless use-cases where you want to preserve some

data.
I You run a database server in Docker: å You need to preserve

the database.
I You run a webserver in Docker: å You need to have access to

files from the host.
I Volumes lets you access directories/files from the host inside

the Container in a transparent way!
I You tell the Daemon which host directory should be "mounted"

where inside the Container.
Source: https://docs.docker.com/storage/volumes/

Florian Beenen Introduction to Docker 22.06.2022 21/36

https://docs.docker.com/storage/volumes/

Using Docker
Using Volumes

Example: Volumes

I We want to write a program in C on the host, compile it in a Container and launch the
program on the host again.

I Use case: We may not want to install a compiler on our host.
I Specify Volume at Container start:

I -v /path/on/host:/path/in/container
I Example: -v /tmp/tools/:/opt

I We can also specify the working directory at Container launch:
I -w /path/in/container

1 docker run \
2 -v /tmp/ tools /:/ opt \ # Mount the Volume to /opt in the Container
3 -w /opt \ # Specify working directory
4 gcc \ # This is the Image Name!
5 gcc prog.c -o myapp # What command to run inside the Container

Florian Beenen Introduction to Docker 22.06.2022 22/36

Using Docker
Using Volumes

Example: Databases

I Another example: We want to run a database (å MariaDB) inside Docker.
I Check out the Image mariadb (https://hub.docker.com/_/mariadb)
I We need to preserve the directory, where MariaDB stores the data! Otherwise it will be lost

on Container termination.
I The Containers also recognizes some environment variables to configure the Container (å -e

parameter).

1 docker run \
2 --rm \ # Delete Container when stopped
3 --name "my -mysql - container " \ # Custom name for Container
4 -v /opt/docker - mysql /:/ var/lib/ mysql \ # Mount the data directory
5 -e MARIADB_ROOT_PASSWORD =" adminadmin123 " \ # Set mysql root password
6 -e MARIADB_USER =" myUser " \ # Create a user account
7 -e MARIADB_PASSWORD =" userpass123 " \ # Password for user account
8 mariadb # Image Name

Florian Beenen Introduction to Docker 22.06.2022 23/36

https://hub.docker.com/_/mariadb

Using Docker
Writing Dockerfiles

Dockerfile

I The Dockerfile is a description/script how an Image is created.
I A Dockerfile can be built/compiled into an Image.
I Every operation in the Dockerfile creates an Image layer, which can be shared among other

Images (for reuseability).
I Usual structure and directives:

I FROM <OtherImage> : Specifies a base Image that is used as a foundation. Common Images
are debian, ubuntu or alpine.

I RUN apt update && apt install -y <package-list> : Install packages in the new Image
(example for Debian/Ubuntu based Images).

I COPY /hostpath /dockerpath : Copy a file from /hostpath on the host into /dockerpath
inside the new Image.

I CMD <path-to-program> : Specify which program should be executed when starting the
Container (å e. g. /bin/bash).

Florian Beenen Introduction to Docker 22.06.2022 24/36

Using Docker
Writing Dockerfiles

Full Example of Dockerfile

Simplified version of a TexLive Image:
1 FROM ubuntu
2 WORKDIR /root
3 ENV TZ= Europe / Berlin
4 RUN apt -get update && apt -get install -y git unzip curl openssh - client texlive -

full
5 CMD /bin/bash

I Name this file Dockerfile (no file extension) and place it in an empty directory.
I We can now build the Image with

docker build -t myTexLiveImage /home/user/DirWithDockerfile.
I This is available on the Docker Hub via the Image name fbeenen/texlive.
I Writing Dockerfiles can be very complicated – these examples are just a simple yet very

useful demonstration.

Florian Beenen Introduction to Docker 22.06.2022 25/36

Using Docker
Networks

Networking in Containers

I Docker handles the network inside the Containers.
I By default (usual case), the Containers are attached to a special network (e. g. via the

docker0 interface on the host).
I IP addresses of Containers are managed by Docker.
I Communication to the outside world is done via NAT on the host. Docker can create the

required IPTables rules for this. If NFTables are used, you need to do everything manually.
I You can create new networks managed by docker with the docker network command (å

advanced topic).
I Even more advanced: You can connect a Container to the host network interface, so it shares

the IP with the host (do not use this, unless required).

Florian Beenen Introduction to Docker 22.06.2022 26/36

Using Docker
Networks

List of Networks

1 user@host :~$ docker network ls
2 NETWORK ID NAME DRIVER SCOPE
3 2 c416e43aa4e bridge bridge local
4 77229220 d687 host host local
5 8625 ccc786b4 none null local
6 599 f15a99615 servers bridge local

I bridge : The default network
I host : The network of the Docker host
I none : For Containers that need to network
I servers : Manually created network for (my) VM-like "servers".

Florian Beenen Introduction to Docker 22.06.2022 27/36

Using Docker
Networks

Communication between Containers
I Setting: You have 2 Containers that need to communicate (e. g. a webserver Container and a

database Container).
I You can "link" the Containers with the docker run command and reach a Container with a

custom name!
1 user@host :~$ docker run -d \ # Run detached
2 -v "/ opt/uhd -tools - apache /:/ var/www/html" \ # Mount webserver directory
3 -v "/ etc/ localtime :/ etc/ localtime :ro" \ # Sync time of Container and Host
4 -e TZ =" Europe / Berlin " \ # Set timezone
5 --hostname =" myserver . example .org" \ # Set Hostname
6 --restart = always \ # Restart Container on Docker restart
7 --name=tools -vl -web \ # Container Name
8 --link mysqlcontainername : mysql # Link MySQL Container to name ’mysql ’
9 php :7.2 - apache

å We can now connect to the MySQL-Container using the name mysql. Docker handles the
name resolution.

Florian Beenen Introduction to Docker 22.06.2022 28/36

Using Docker
Networks

Connection to the Outside World
I If you want to access a service (that runs on a port) from outside the Docker environment,

you need to publish the port!
I Publishing a port means that Docker forwards traffic towards the host on a specific port to

the Container (i. e. Docker does either NAT or acts as a proxy, depending on configuration).

Example:
1 user@host :~$ docker run -d \ # Run detached
2 -v "/ opt/uhd -tools - apache /:/ var/www/html" \ # Mount webserver directory
3 -v "/ etc/ localtime :/ etc/ localtime :ro" \ # Sync time of Container and Host
4 -e TZ =" Europe / Berlin " \ # Set timezone
5 --hostname =" myserver . example .org" \ # Set Hostname
6 --restart = always \ # Restart Container on Docker restart
7 --name=tools -vl -web \ # Container Name
8 -p 8080:80 \ # Map host port 8080 to Container port 80
9 php :7.2 - apache

å If host has IP 123.123.123.120, you can now access the Container via
http://123.123.123.120:8080.

Florian Beenen Introduction to Docker 22.06.2022 29/36

Using Docker
Networks

Connection to the Outside World (2)

172.17.0.10

Database

172.17.0.10

Database

172.17.0.11

Webserver

172.17.0.11

Webserver

172.17.0.1

Docker Daemon

Internet

123.123.123.100

direct communication

Florian Beenen Introduction to Docker 22.06.2022 30/36

Using Docker
Security

Some Thoughts about Security

I Docker is cool because you package everything you need in your image.
I Docker is really dangerous because you package everything you need...
I Example: You build your Image off of ubuntu:latest. Your app runs for 2 years. You will

never receive security updates for your runtime libraries because they are bundled in your
Image!

I Solution: Re-build all your Images on a regular basis (e. g. by a GitLab CI pipeline)!
I Trust issues: When using Images from the Hub, you trust that this Image does not contain

malware/bad things. It is also very difficult to guarantee that every sub-Image that you use
is clean and built on a regular basis (see above).

I Solution: Build everything yourself. You can use the Dockerfiles from the Hub, but do not
rely on their (old) build!

I Please watch this talk for your dose of WTF moments and Docker in action:
https://www.youtube.com/watch?v=RqhxphyVL88.

Florian Beenen Introduction to Docker 22.06.2022 31/36

https://www.youtube.com/watch?v=RqhxphyVL88

Exercises

Exercises

Florian Beenen Introduction to Docker 22.06.2022 32/36

Exercises

Test System

I We have a testing system that you can use to try the following examples:
I Connect to it via SSH!
I Hostname: sustools22.ziti.uni-heidelberg.de
I Port: 22
I Username: Your Uni-ID
I Password: The password for your Uni-ID
I You can only log in from the university network and as a participant of the SS22 tools lecture.

Florian Beenen Introduction to Docker 22.06.2022 33/36

Exercises
Hello World

Hello World

Try and re-create the "Hello World" launch from Slide 12.

Hello World
I Connect to a Docker-ready host via SSH (or else).
I Issue docker ps to check, if Docker runs.
I Now run docker run hello-world and see, if everything works.
I Afterwards, ensure that the downloaded Image is listed under docker images.
I Now, delete the Image again with docker rmi. Why is this not possible? Try to resolve this

(Hint: docker ps -a).

Florian Beenen Introduction to Docker 22.06.2022 34/36

Exercises
Running Interactive Commands

Running Interactive Commands

Running Interactive Commands
I We want to run a few commands in an interactive Ubuntu Container, like on Slide 14!
I Start a clean Ubuntu Container (Remember docker -it ubuntu).
I Look around – ensure that you are indeed executing commands in the Container.
I Close the Container with exit. Ensure that you are now in the shell of the host again.
I Re-start the Container. Install the package sl (run apt update && apt install sl).
I Do you like trains? Run /usr/games/sl.
I Detach the session like shown on Slide 17.
I Check that the Container is still running with docker ps.
I Kill the Container with docker kill.

Florian Beenen Introduction to Docker 22.06.2022 35/36

Exercises
Writing a Dockerfile

Writing a Dockerfile

Writing a Dockerfile
I We want to build an Image that prints the current time and then exists.
I The current time should be obtained by the WorldTimeAPI. We can get the current time

with curl "http://worldtimeapi.org/api/timezone/Europe/Berlin.txt"
I We can isolate the output properly with

curl -s "https://worldtimeapi.org/api/timezone/Europe/Berlin.txt" |
grep -Po ’(?<=ˆdatetime:).*’ (extra task: try to understand what is going on here).

I Now, write a Dockerfile:
I Use ubuntu:latest as the base Image
I Install curl into the Image
I Set the above command as CMD entrypoint.

I Build the Image!
I Run the Image as a Container!
I Output should be identical to running docker run fbeenen/time.

Florian Beenen Introduction to Docker 22.06.2022 36/36

	Introduction
	What are Containers?
	What is Docker?

	Using Docker
	Basic Commands
	Simple Ubuntu Container
	Working with Containers
	Using Volumes
	Writing Dockerfiles
	Networks
	Security

	Exercises
	Hello World
	Running Interactive Commands
	Writing a Dockerfile

