Exercise: Thévenin, Resistors, Capacitors

Prof. Dr. P. Fischer
Lehrstuhl für Schaltungstechnik und Simulation
Uni Heidelberg

Exercise 1

- Derive the expressions for the series and parallel connection of capacitors
- Use charge conservation (at node x)

Exercise 2

- Derive the Thévenin Equivalent for the following circuit:

- Try two different methods:
- Use the Open/Short method with Kirchhoff's rules
- Convert the I-source part to a voltage source first...

Exercise 3

- What is the Thévenin Equivalent of the following circuit?

- Use two methods to find the result:
- parallel / series connection of resistors and your knowledge about the voltage divider
- short/open method

Exercise 4

- What is the 'gain' (attenuation) of the following voltage divider (all resistors have 1 Ohm):

- Try two different methods:
- Your knowledge of parallel / serial connection of resistors
- Kirchhoff's law

Exercise 5

- A voltage source with voltage V_{0} and output resistance R_{0} is loaded by a resistor R_{L} :

- What is the output voltage $\mathrm{V}_{\text {out }}$?
- Which current flows in R_{L} ?
- What power $(P=U I)$ is dissipated in R_{L} ?
- Check that noting is dissipated for $R_{L}=0$ and $R_{L} \rightarrow \infty$
- For which value of R_{L} is the dissipation maximized?
- What is the dissipation?

Exercise 6

- We consider charging of a capacitor C though a resistor R to a voltage U_{0}.

- Show that $U(t)=U_{0}-U_{0} e^{-\frac{t}{R C}}$ satisfies the differential equation
- Simplify U(t) for small times $\mathrm{t} \ll \mathrm{RC}$.
- What is the initial slope?
- Derive this slope directly (assuming $\mathrm{U}(0)=0$).

