Some BASICs

Voltage, Current, Components and AC behavior, Bode Plots, Transfer Functions, Thévenin Equivalent, High-pass and Low-pass filters,...

Prefixes for Units

- For writing down small or large quantities, exponents can be used: $1.5 \times 10^{6} \Omega, 3 \times 10^{-9} \mathrm{~A}$
- To simplify, prefixes in steps of 1000 are used:

- T	Tera	$\times 10^{12}$	
- G	Giga	$\times 10^{9}$	
- M	Mega	$\times 10^{6}$	
- k	Kilo	$\times 10^{3}$	
-	1	$\times 10^{0}$	
- m	Milli	$\times 10^{-3}$	This range is really
- μ (or u)	Mikro	$\times 10^{-6}$	used in chip design
- n	Nano	$\times 10^{-9}$	
- p	Piko	$\times 10^{-12}$	
- f	Femto	$\times 10^{-15}$	
- a	Atto	$\times 10^{-18}$	

- Try to learn: 'Piko \times Kilo $=$ Nano, Milli \times Mega $=$ Kilo,.. '

Voltage, Current, Kirchhoff's Laws

Voltage

- Voltage is the difference in electrical potentials, i.e. the energy required to move a unit charge in an electric field
- This is only well defined in static fields where $\operatorname{rot} E=0$
- Unit: Volt (V)

Ground

- Voltages are really potential differences
- To simplify life, we define a reference potential to which voltages are referred. We call it 'ground'
- i.e. when we say 'net A has 3 V ', we mean $\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{GND}}=3 \mathrm{~V}$
- Ground is at OV by definition
- Common ground symbol are:

$$
\stackrel{\perp}{\perp} \stackrel{\perp}{\overline{1}}+\perp
$$

- (Later we may use several grounds, all at 0V, but separated, for digital and analogue circuit parts)

Current

- Electric current is the flow (or change) of electric charge
- i = dQ / dt
- Unit: Ampere (A)

Kirchhoff's Laws

(1.) The sum of currents at any node is zero:

$$
\sum_{k=1}^{n} I_{k}=0
$$

- Follows from charge conservation

2. The sum of voltages in any closed loop is zero:

RESISTORS \& CAPACITORS

Resistors

- A resistor is a 2 terminal device
- When voltage is applied, a current flows
- Ideally, current is proportional to the voltage (Ohm's 'law'):
$\mathrm{I}=\mathrm{U} \times \mathrm{G} \quad \mathrm{G}$ is the conductivity (Leitwert) in Siemens [S] or
$\mathrm{I}=\mathrm{U} / \mathrm{R} \quad \mathrm{R}$ is the resistivity (Widerstand) in Ohm [Ω]
- G and R describe the same thing. $G=1 / R, R=1 / G$
- Symbols:

- Note: Ohm's 'law’ is no law. Not all materials are 'ohmic'

Parallel Connection of Resistors

$$
\begin{gathered}
\text { I }=\mathrm{I}_{1}+\mathrm{I}_{2}=\mathrm{G}_{1} \times \mathrm{U}+\mathrm{G}_{2} \times \mathrm{U}=\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right) \times \mathrm{U} \quad \mathrm{I}=\mathrm{G}_{\mathrm{par}} \times \mathrm{U} \\
\mathrm{G}_{\mathrm{par}}=\mathrm{G}_{1}+\mathrm{G}_{2} \quad \leftrightarrow \quad \mathrm{I} \rightarrow \text { (for both } \mathrm{R} \text {) } \\
\mathrm{I}_{1}
\end{gathered}
$$

Series Connection of Resistors

$$
\begin{aligned}
& \text { U } \\
& \xrightarrow{\mathrm{U}_{1}} \xrightarrow{\mathrm{U}_{2}} \\
& U=U_{1}+U_{2}=I \times R_{1}+I \times R_{2}=I \times\left(R_{1}+R_{2}\right) \quad U=I \times R_{\text {ser }} \\
& R_{\text {ser }}=R_{1}+R_{2} \quad \leftrightarrow \quad 1 / G_{\text {ser }}=1 / G_{1}+1 / G_{2}
\end{aligned}
$$

The Voltage Divider (without load current!)

- A omnipresent topology is the voltage divider:

- The input current $i_{\text {in }}=v_{\text {in }} /\left(R_{1}+R_{2}\right)$
- This current flows through R_{1} and R_{2}, i.e. $i_{\text {in }}=i_{R 1}=i_{R 2}$
- On R_{2}, it develops a voltage $v_{\text {out }}=i_{R 2} R_{2}=i_{\text {in }} R_{2}=v_{\text {in }} R_{2} /\left(R_{1}+R_{2}\right)$
- Overall: $\quad v_{\text {out }} / v_{\text {in }}=R_{2} /\left(R_{1}+R_{2}\right)$
- Remember: The 'gain' is the value of the resistor where we measure divided by the total resistance

Capacitors: Water Analogy

- A capacitor is a container for charge. Analogy using water:

$$
\begin{array}{lll}
\text { Current } & \Leftrightarrow & \text { Water flow }\left(\mathrm{m}^{3} / \text { second or so }\right) \\
\text { Voltage } & \Leftrightarrow & \text { Water level }(\mathrm{m}) \\
\text { Capacitance } & \Leftrightarrow & \text { Area of a container }\left(\mathrm{m}^{2}\right) \\
\mathrm{V}=\mathrm{T} \mathrm{I} \mathrm{/} \mathrm{C} & \Leftrightarrow & \text { level = time } \mathrm{x} \text { flow / area }
\end{array}
$$

- Water flowing in the container leads to rising water level.
- Higher flow (current) \rightarrow faster increase of (voltage) level
- Larger container (cap) \rightarrow slower (voltage) increase
$\mathrm{V}(\mathrm{t})$ @ const. current
- With this model, we can also visualize nonlinear caps:

Capacitors: Store Electric Charge

- Prototype: parallel plate capacitor
- Charge Q on plates generates a pro-

- The field between plates leads to a proportional voltage V
- $\rightarrow \mathbf{Q}$ and \mathbf{V} are proportional
- $\mathrm{Q}=\mathrm{C} \times \mathrm{V}$: capacitance is factor between charge and voltage - A large capacitor can store a lot of charge at low voltage
Energy required to add a
- The voltage on a capacitor is given by the current integral:

$$
V=\frac{Q}{C}=\frac{1}{C} \int I(t) d t \quad \Leftrightarrow \quad I(t)=C \frac{d V}{d t}
$$

- The stored energy (denoted here also with E) is:

$$
d E(Q)=V(Q) d Q \Rightarrow E=\int_{0}^{Q} V\left(Q^{\prime}\right) d Q^{\prime}=\int_{0}^{Q} \frac{Q^{\prime}}{C} d Q^{\prime}=\frac{Q^{2}}{2 C}=\frac{1}{2} C V^{2}
$$

Charging a Capacitor (important!)

- At constant current I: linear ramp:

$$
\begin{aligned}
I(t) & =I_{0}=\text { const } \\
\Delta Q(t) & =\int_{0}^{t} I\left(t^{\prime}\right) d t^{\prime}=\int^{t} I_{0} d t=I_{0} \times t \\
\Delta U(t) & =\frac{\Delta Q(t)}{C}=\frac{I_{0}^{0}}{C} \times t
\end{aligned}
$$

- Through resistor R: exponential settling:

Parallel and Series Connection of Capacitors

- For derivation, see exercise...

Voltage \& Current Sources

Voltage Sources

- A voltage source has 2 terminals:

$\frac{\perp}{T} \oplus \stackrel{+}{\oplus} \downarrow$

- An ideal voltage source maintains the voltage for any output current ('1000 A')
- The voltage of a real source drops with load current.
- This is modeled by a series resistor (internal resistor, source resistor):

- The open voltage is $\mathrm{V}_{0}\left(\mathrm{l}_{\text {out }}=0 \rightarrow\right.$ voltage drop over R_{V} is 0$)$
- The short circuit current is $I_{\text {short }}=V_{0} / R_{V}$
- Note: ‘Good’ voltage sources have low $\mathrm{R}_{\mathrm{V}} \rightarrow 0$

Current Sources

- A current source has 2 terminals:

- An ideal current source maintains the current for any output voltage
- The current of a real source drops with load voltage.
- This is modeled by a parallel resistor (internal resistor, source resistor):

- The short circuit current is I_{0} (no voltage at $\mathrm{R}_{\mathrm{l}} \rightarrow$ no current)
- At a voltage of $I_{0} \times R_{l}$ no more current flows (all flows in R_{I})
- Note: 'Good' current sources have high $\mathrm{R}_{\mathrm{l}} \rightarrow \infty$

Equivalence of U- and I-Source

- Flip the diagram of the I-source and compare:

Voltage Source

Current Source

- Same shape! Therefore:
- For voltage source with V_{0} and R_{V}, a current source with $I_{0}=V_{0} / R_{V}$ and $R_{I}=V_{0} / I_{0}=R_{V}$ behaves the same!

Thévenin's Theorem

Any combination of U-sources, I-sources and resistors behaves like a (ideal) voltage source with an internal resistor

- This is fairly obvious from the previous page and the linearity of the resistor properties
- Obviously, a current source with internal resistor can also be used
- Example:

- To find V_{0} : calculate the open voltage
- To find R_{V} : find the short circuit current. Then $R_{V}=V_{0} / I_{\text {short }}$

A More Complicated Example

- What is the Thévenin equivalent of this circuit?

- Before we start
- Label nodes
- Re-draw schematics for better understanding:

A More Complicated Example

- Open circuit:

- Current sum at note V_{1} :
- $\left(2 \mathrm{~V}-\mathrm{V}_{1}\right) / 3 \Omega=0.5 \mathrm{~A}+\mathrm{V}_{1} / 4 \Omega \rightarrow \mathrm{~V}_{1}=0.285 . . \mathrm{V}$
- $\mathrm{V}_{\text {out }}\left(\mathrm{l}_{\text {out }}=0\right)=\mathrm{V}_{1}+1 \mathrm{~V}=1.285 . . \mathrm{V}=\mathrm{V}_{0, \mathrm{eq}}$

A More Complicated Example

- Short circuit:

- Here we have $\mathrm{V}_{\text {out }}=0 \mathrm{~V}$ and therefore $\mathrm{V}_{1}=-1 \mathrm{~V}$
- Again current sum at note V_{1} :
$\cdot\left(2 \mathrm{~V}-\mathrm{V}_{1}\right) / 3 \Omega=0.5 \mathrm{~A}+\mathrm{V}_{1} / 4 \Omega+\mathrm{I}_{\text {short }} \xrightarrow{\mathrm{V}_{1}=-1 \mathrm{~V}} \mathrm{I}_{\text {short }}=0.75 \mathrm{~A}$
- $\mathrm{R}_{\mathrm{V}}=\mathrm{V}_{0, \mathrm{eq}} / \mathrm{I}_{\text {short }}=1.285 . . \mathrm{V} / 0.75 \mathrm{~A}=1.71 \Omega$

A More Complicated Example - Simulation

Thévenin Equivalent of a Voltage Divider

- Consider a voltage divider with two equal resistors:

- $\mathrm{V}_{0, \text { eq }}=\mathrm{V}_{0} / 2 \quad\left(\mathrm{I}=\mathrm{V}_{0} /(2 \mathrm{R}), \mathrm{V}_{0, \mathrm{eq}}=\mathrm{R} \times \mathrm{I}\right)$
$-I_{\text {short }}=V_{0} / R \rightarrow R_{V}=V_{0, \text { eq }} / I_{\text {short }}=R / 2$
- In the general case R_{V} is the parallel connection of R_{1} and R_{2}. Remember that!

DRawing Schematics

Drawing Schematics: Some Rules

- Positive voltages are at the top, negative at the bottom
- Input signals are at the left, outputs at the right
- Connected crossings are marked with a - :
- should be avoided
- T-connections do not need a • :
- but they can have one...

Signal Flow

- Signal from should be from left to right

