Exercise: Transfer Functions, Filters

Prof. Dr. P. Fischer
Lehrstuhl für Schaltungstechnik und Simulation
Uni Heidelberg

Recommendations

- I strongly recommend to use a mathematical program (Mathematica, Maple, SageMath,..) to solve the exercises
- For transfer functions, inspect each result:
-What happens for $\omega \rightarrow 0, \infty$?
-What happens if component values go to 0 or ∞ ?

Exercise 1

- Derive the Transfer Function of this circuit:

- Use 3 different approaches:
- Treat the circuit directly (using Kirchhoff's rule)
- Consider it as a voltage divider of two Impedances. Use R_{1} for Z_{1} and the parallel connection of R_{2} and C_{2} for Z_{2}
- Replace the (resistive) voltage divider $\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right)$ by its Thévenin equivalent and then add the capacitor
- Make a Bode Plot
- Observe the difference to the normal Low Pass Filter

Solution 1

Direct Treatment:

$$
\mathrm{EQ}=\frac{\text { Vin }- \text { Vout }}{R 1}=\text { Vout sc2 }+\frac{\text { Vout }}{R 2} ;
$$

Solve[EQ, Vout] // First
$\left\{\right.$ Vout $\left.\rightarrow \frac{\mathrm{R} 2 \mathrm{Vin}}{\mathrm{R} 1+\mathrm{R} 2+\mathrm{C} 2 \mathrm{R} 1 \mathrm{R} 2 \mathrm{~s}}\right\}$
Hdirect $=\frac{\text { Vout }}{\text { Vin }} / . \%$
$\frac{\mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2+\mathrm{C} 2 \mathrm{R} 1 \mathrm{R} 2 \mathrm{~s}}$

Voltage Divider:

$$
\begin{aligned}
& \text { Hdiv }=\frac{\mathrm{Z} 2}{\mathrm{Z} 1+\mathrm{Z2}} / \cdot\left\{\mathrm{z} 1 \rightarrow \mathrm{R} 1, \mathrm{z} 2 \rightarrow\left(\frac{1}{\mathrm{R} 2}+\mathrm{sC} 2\right)^{-1}\right\} / / \text { simplify } \\
& \frac{\mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2+\mathrm{C} 2 \mathrm{R} 1 \mathrm{R} 2 \mathrm{~s}} \\
& \text { Hdirect }=\text { Hdiv }
\end{aligned}
$$

True

Solution 1: Thévenin

Hthenevin $=\frac{g}{1+s R R C 2} / .\left\{g \rightarrow \frac{R 2}{R 1+R 2}, R R \rightarrow\left(\frac{1}{R 1}+\frac{1}{R 2}\right)^{-1}\right\} / /$ Simplify

Solution 1

- Compared to the 'simple' Low-Pass:
- The signal is attenuated by $\mathrm{R}_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$
- The time constant is lowered (i.e. the corner frequency is raised)
- Plot for $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{C}_{2}=1: \quad$ нир $=\sqrt{\frac{1}{1+\dot{i} \omega \mathrm{RC}} \text { conjugate }\left[\frac{1}{1+\dot{\mathrm{i}} \omega \mathrm{RC}}\right]} / .\{\mathrm{RC} \rightarrow 1\}$

Exercise 2

- Analyze the following circuit (simulation \& calculation!):

- What is the transfer function?
- At which frequencies are the 'pole' in the denominator and the 'zero' in the nominator?
-What are gain and phase for $s \rightarrow 0$ and for $s \rightarrow \infty$? Why?
- What happens for $\mathrm{C}_{1} \rightarrow 0$, for $\mathrm{R} \rightarrow 0$, for $\mathrm{R} \rightarrow \infty$? Reasonable?
- Simulate the circuit for $\mathrm{C}_{1}=\mathrm{C}_{2}=10 \mathrm{pF}$ and $\mathrm{R}=10 \mathrm{k} \Omega$. Plot gain and phase!
- Chose values so that the circuit attenuates to $1 / 10$ at high frequencies.
- For fun: At which frequency is phase shift maximal?

Solution 2

- Two possibilities:

1. Treat circuit as voltage divider with $\mathrm{C}_{1} / / \mathrm{R}$ and C_{2}
2. Use Kirchhoff's law @ node $\mathrm{v}_{\text {out }}$

- Voltage divider:
- For any Z_{1}, Z_{2}, we have $v=v_{\text {out }} / v_{\text {in }}=Z_{2} /\left(Z_{1}+Z_{2}\right)$
- With $1 / Z_{1}=1 / R+s C_{1}$ and $1 / Z_{2}=s C_{2}$:

$$
v=\frac{1+C_{1} R s}{1+\left(C_{1}+C_{2}\right) R s}
$$

- Kirchhoff:

- Solve $\left(v_{\text {in }}-v_{\text {out }}\right) / R+\left(v_{\text {in }}-v_{\text {out }}\right) s C_{1}=v_{\text {out }} s C_{2}$ for $v_{\text {out }}$

Solution 2

- Limits

$v=\frac{1+C_{1} R s}{1+\left(C_{1}+C_{2}\right) R s}$
$\cdot s \rightarrow 0$: caps are gone. v is just 1 . No phase shift.

- $s \rightarrow \infty$: R can be neglected. frequency dependencies cancel.

This is just a capacitive voltage divider. No phase shift

- Phase shift:
gain $=$ Sqrt $[(\mathrm{HH} / . \mathrm{s} \rightarrow \dot{\mathrm{I}} \omega)(\mathrm{HH} / . \mathrm{s} \rightarrow-\dot{\mathrm{I}} \omega)] / /$ FullSimplify

$$
\sqrt{\frac{1+C 1^{2} R^{2} \omega^{2}}{1+(C 1+C 2)^{2} R^{2} \omega^{2}}}
$$

phase $=-\frac{180}{\pi} \operatorname{ArcTan}\left[\frac{\operatorname{Im}[\text { ComplexExpand }[\mathrm{HH} / . \mathrm{s} \rightarrow \dot{\mathrm{i}} \omega]]}{\operatorname{Re}[\operatorname{ComplexExpand}[\mathrm{HH} / . \mathrm{s} \rightarrow \dot{\mathrm{i}} \omega]]}\right] / /$ FullSimplify
$180 \operatorname{ArcTan}\left[\frac{\mathrm{C} 2 \mathrm{R} \omega}{1+\mathrm{C} 1(\mathrm{C} 1+\mathrm{C} 2) \mathrm{R}^{2} \omega^{2}}\right]$

PhaseDeriv = D[phase, ω] // FullSimplify

$$
\frac{180 \mathrm{C} 2 \mathrm{R}\left(1-\mathrm{C} 1(\mathrm{C} 1+\mathrm{C} 2) \mathrm{R}^{2} \omega^{2}\right)}{\pi+\left(2 \mathrm{C} 1^{2}+2 \mathrm{C} 1 \mathrm{C} 2+\mathrm{C} 2^{2}\right) \pi \mathrm{R}^{2} \omega^{2}+\mathrm{C} 1^{2}(\mathrm{C} 1+\mathrm{C} 2)^{2} \pi \mathrm{R}^{4} \omega^{4}}
$$

$\omega \max =\omega /$. Solve[PhaseDeriv $=0, \omega] / /$ Last // FullSimplify

$$
\frac{1}{\sqrt{C 1(C 1+C 2) R^{2}}}
$$

LogLinearPlot[phase /. PARAM, $\left\{\omega, 1 \times 10^{3}, 1 \times 10^{9}\right\}$]

Exercise 3: Cascaded Stages

- Consider the following two stage circuit (again):

- The triangle is a (voltage) buffer with infinite input impedance (it does not load the first low-pass) and zero output impedance. For simulation use a vcvs (voltage controlled voltage source) from analogLib with gain 1
-What transfer function do you expect?
- Simulate the circuit !
- Simulate a version without buffer in the same schematic
-Where are differences ?
- Use a much larger R and correspondingly smaller C in the second low pass.
- Now calculate the exact transfer function without buffer

Solution 3

- Transfer Function with buffers

HH1 $\left[s_{-}\right]=\left(\frac{1}{1+s R C}\right)^{2} ;$ (* with buffers: square of s
gain1[ω_{-}] = Sqrt[HH1[í ω] HH1[-ii $\left.\omega\right]$]// FullSimplify
$\frac{1}{1+\mathrm{C}^{2} \mathrm{R}^{2} \omega^{2}}$

- Without Buffers:

$$
\begin{aligned}
& E Q 1=\frac{v i n-v 1}{R 1}==v 1 s C 1+\frac{v 1-\text { vout }}{R 2} ;(* \text { node v1 *) } \\
& E Q 2=\frac{v 1-\text { vout }}{R 2}==\text { vout s C2; (* output node *) } \\
& \text { Eliminate [\{EQ1, EQ2\}, v1] // Simplify } \\
& \text { vin }=(1+C 2(R 1+R 2) s+C 1 R 1 s(1+C 2 R 2 s)) \text { vout } \\
& \text { HH2 [s_] }=\frac{\text { vout }}{\text { vin } / . ~ S o l v e[\%, ~ v o u t] ~ / / ~ F i r s t ~} \\
& \frac{1}{1+C 1 R 1 s+C 2 R 1 s+C 2 R 2 s+C 1 C 2 R 1 R 2 s^{2}}
\end{aligned}
$$

Solution 3

- Bode Plot for different RC combinations in second stage:
- We note two poles.
- They coincide, when the second low pass does not load the first

- Plot the poles as a function of f where $\mathrm{R}_{2}=\mathrm{R}_{1} f, \mathrm{C}_{2}=\mathrm{C}_{1} / f$, so that $\mathrm{R}_{2} \mathrm{C}_{2}=\mathrm{R}_{1} \mathrm{C}_{1}$:

$$
\mathrm{p} 1, \mathrm{p} 2
$$

Exercise 4: Notch Filter

- Consider the following circuit made of cascaded High- and Low Pass stages:
- The resistors at the output just add the signals at (a) and (b)

- What is the output signal at the corner frequency?
- Explain this by comparing amplitudes and phases at (a) and (b)

Solution 4

\$Assumptions $=\omega>0 \& \& R C>0 ; H L P=\frac{1}{1+\dot{I} \omega R C} ; H H P=\frac{\dot{I} \omega R C}{1+\dot{\text { I }} \omega R C} ;$ vout $=\mathrm{Vb}+\frac{1}{2}(\mathrm{Va}-\mathrm{Vb}) / /$ Simplify (* Output is averge of Va and $\mathrm{Vb} *$)
$\begin{array}{ll}\frac{V a+V b}{2} \quad & \text { LogLinearPlot }[\mathrm{dB}[\sqrt{\mathrm{HMag}}],\{\omega, 0.1,10\} \\ \quad, \text { GridLines } \rightarrow\{\{1\},\{0\}\}, \text { PlotRange } \rightarrow\{-80,5\}, \text { Filling } \rightarrow-80]\end{array}$
$H=\frac{\text { HLP HLP }+ \text { HHP HHP }}{2} / /$ Simplify
$\frac{-1+\mathrm{RC}^{2} \omega^{2}}{2(-i+\mathrm{RC} \omega)^{2}}$
HMag $=\mathrm{H}$ Conjugate $[\mathrm{H}] / . \mathrm{RC} \rightarrow 1 / /$ Fullsimplify $\frac{\left(-1+\omega^{2}\right)^{2}}{4\left(1+\omega^{2}\right)^{2}}$

- At the corner frequency, the signal is fully stopped!
- This is because the phases of the two signals are $\pm 90^{\circ}$, i.e. the signals are complementary
- (A bit tricky to verify in Mathematic due to jump in ArcTan[]..)

Exercise 5: Wien Bridge / Oscillator

- Consider this circuit:
- What is the transfer function?
- What is the magnitude at the center frequency?
- What is the Phase at the center frequency?
- Simulate the circuit for $R=1 k C=1 n$

- You can use this 'Wien Bridge' to make an oscillator:
- Amplify $\mathrm{v}_{\text {out }}$ by exactly 3 (vcvs !) and feed the signal back to $\mathrm{v}_{\text {in }}$.
- Set an initial condition of 1V (parameter!) for the lower C and start a transient simulation.
- How does this work?

- What happens if the gain is not exactly 3 ?

Solution 5

$-H[s]=\frac{C R s}{1+3 C R s+C^{2} R^{2} s^{2}}$, gain $=\frac{C R \omega}{\sqrt{1+7 C^{2} R^{2} \omega^{2}+C^{4} R^{4} \omega^{4}}}$

- Centre frequency is at $\omega_{0}=1 / R C$.
- Gain there is exactly $1 / 3$.
- Phase is $0\left(H\left[i \omega_{0}\right]\right.$ is real:

```
\(\mathrm{HH}\left[\frac{\dot{\mathrm{i}}}{\mathrm{RC}}\right]\)
```

$\frac{1}{3}$

Solution 5

- Oscillator for gain $<3,=3,>3$:

Itermezzo: Wien Oszillator

- Wien bridge: Max Wien (1891)
- In 1939, William Hewlett and David Packard (Stanford University) patent an Oscillator using a light bulb to stabilize gain (leading to with very low distortion)
- This is the first product of 'Hewlett - Packard' (HP): The HP 200A 'Audio Oscillator'

Schematic Diagram (HP 200 B)

Discrete circuit versions

- The problem is to stabilize the gain to exactly 3
- This is achieved by a regulation loop which monitors the output amplitude by some means
- Fast regulation leads to distortion. HP's 'trick' was that the voltage dependent res. of the light bulb varies very slow.

Exercise 6: Gyrator (difficult)

- A 'Gyrator' can mimic inductive behaviour, while using only resistors, capacitors and amplifiers
- Consider the following circuit:

- Calculate the input impedance $\mathrm{Z}_{\text {in }}=\mathrm{U}_{\text {in }} / \mathrm{I}_{\text {in }}$ of the circuit - (Use Kirchhoff's law at the input node and node a)
- For frequencies < 1/C R_{L}, the denominator can be neglected.
- Compare the result to an inductor in series with R_{L}
- Simulate.
- Note that R should be larger than R_{L} (what happens for $R=R_{L}$?)
- Plot $i_{\text {in }}$.
- Add another capacitor in series to produce a resonant circuit.

Solution 6

- Mathematica:

```
EQin = iin == (vin - va)sc + (vin-vb)
EQa = (vin - va) sC == va/R;
Eliminate[{EQin, EQa}, va] // Simplify
in(RL + CRRLs) == vin + CRLsvin
sol = Solve[%, iin] // First
{in }->\frac{\mathrm{ vin +CRLsvin}}{RL(1+CRs)}
```

Zgyrator $\left[s_{-}\right]=\frac{\text { vin }}{\text { iin }} /$.sol // Simplify
RL + CRRLs
$1+\mathrm{CRLs}$

> Numerator is $R L+s L$ with $L=C R R L$

Simulation with extra Cosc:

