AC Behavior of Components

AC Behavior of Capacitor

- Consider a capacitor driven by a sine wave voltage:

- The current: $\quad I(t)=C \frac{d U(t)}{d t}=C U_{0} \omega \cos (\omega t+\varphi)$
is shifted by $90^{\circ}(\sin \leftrightarrow \cos)$!

Peak current is high for

- large cap
- large voltage
- high frequency... because charge must flow in/out more often in the same time

Complex Impedance

- To simplify our calculations, we would like to extend the relation $R=U / I$ to capacitors, using an impedance Z_{C}.
- In order to get the phase right, we use complex quantities:

$$
U(t)=U_{0} \sin (\omega t+\varphi) \quad \leadsto \quad U_{0} \cdot e^{i(\omega t+\varphi)}=U_{0}[\cos (\omega t+\varphi)+i \sin (\omega t+\varphi)]
$$

for voltages and currents.
Euler Equation!

- By mixing complex and real parts, we can mix $\sin ()$ and $\cos ()$ components and therefore influence the phase.
- Note: Often ' j ' is used instead of ' i ' for the complex unit, because ' i ' is used as current symbol...
- Often 's' is used for $\mathrm{i} \omega$ (or $\mathrm{j} \omega$)

From Complex Values back to Real Quantities

- To find ('back') the amplitude of such a complex signal, we calculate the length (magnitude) of the complex vector as

$$
a=\sqrt{\mathrm{ZZ}^{*}}
$$

- To get the phase, we use real and imaginary parts:

$$
\varphi=\operatorname{atan}\left(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right)
$$

Note: this simple formula works only
in 2 quadrants. You may have to look
 at the signs of $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$

Hints for Mathematica

- Mathematica knows complex arithmetic
- Useful Functions are Abs [] and Arg []
- Remember: Imaginary Unit is typed as ESC i i ESC
- If you want to simplify expression, Math. has to know that expressions like $\omega, \mathrm{R}, \mathrm{C}, \mathrm{U}$ are real (or even positive)
- This can be done with Assumptions:

- Sometimes

ComplexExpand []

can be used. It assumes all arguments are real (but not necessarily > 0):

$$
\begin{aligned}
& \{\operatorname{Abs}[\dot{i} \omega], \operatorname{Arg}[\dot{i} \omega]\} / / \text { ComplexExpand } \\
& \left\{\sqrt{\omega^{2}}, \operatorname{Arg}[\dot{i} \omega]\right\}
\end{aligned}
$$

Complex Impedance of the Capacitor

- We know that

$$
I(t)=C \frac{d U(t)}{d t}
$$

- With

$$
U(t)=U_{0} \cdot e^{i(\omega t+\varphi)}
$$

we have $\quad I(t)=C U^{\prime}(t)=C \cdot U_{0} \cdot i \omega \cdot e^{i(\omega t+\varphi)}$

- Therefore

$$
Z_{C}=\frac{U(t)}{I(t)}=\frac{1}{i \omega C}=\frac{1}{s C}
$$

- Similar:

$$
Z_{L}=i \omega L=s L
$$

The impedance of a capacitor becomes very small at high frequencies

Checking this again for a Capacitor

- For an input voltage (sine wave of freq. ω) with phase $\varphi=0$
we have

$$
\begin{aligned}
U(t) & =U_{0} e^{i \omega t} \\
I(t) & =\frac{U(t)}{Z_{C}}=U_{0} e^{i \omega t} \cdot i \omega C
\end{aligned}
$$

- The amplitude of $I(t)$ is

$$
\begin{aligned}
|I| & =\sqrt{I(t) I^{*}(t)} \\
& =\sqrt{U_{0} e^{i \omega t} \cdot i \omega C \times U_{0} e^{-i \omega t} \cdot(-i) \omega C} \\
& =\sqrt{U_{0}^{2} e^{i \omega t} e^{-i \omega t} \cdot(i \omega C)(-i \omega C)} \\
& =U_{0} \omega C
\end{aligned}
$$

- The phase is (quite complicated...):

$$
\varphi_{I}=\operatorname{atan}\left(\frac{\operatorname{Im}(I)}{\operatorname{Re}(I)}\right)=\operatorname{atan}\left(\frac{U_{0} \omega C \cos (\omega t)}{-U_{0} \omega C \sin (\omega t)}\right)=-\operatorname{atan}\left(\frac{1}{\tan (\omega t)}\right)=\omega t-\frac{\pi}{2}
$$

Simplifying even more

- As we have just seen, the $U(t)=U_{0} e^{i \omega t}$ propagates trivially to the output.
- We therefore drop this part in the future and just use ' 1 '!

Recipe to Calculate Transfer Functions

- Replace all component by their complex impedances (1/(sC), sL, R)
- Assume a unit signal of ' 1 ' at the input (in reality it is $U(t)=U_{0} e^{i \omega t}$)
- Write down all node current equations or current equalities using Kirchhoff's Law (they depend on s)
- You need N equations for N unknowns
- Solve for the quantity you are interested in (most often $\mathrm{V}_{\text {out }}$)
- Analyze the result (amplitude / phase / ...)

Example: Low Pass

- Consider

- We have only one unknown: $\mathrm{v}_{\text {out }}$
- Current equality at node $\mathrm{v}_{\text {out }}: \frac{\mathrm{v}_{\text {in }}-\mathrm{v}_{\text {out }}}{R}=I_{R}=I_{C}=\mathrm{v}_{\text {out }} s C$
- Solve for $\mathrm{v}_{\text {out: }} \quad \mathrm{v}_{\text {in }}-\mathrm{v}_{\text {out }}=\mathrm{v}_{\text {out }} s C R$

$$
\begin{aligned}
\mathrm{v}_{\text {in }} & =\mathrm{v}_{\text {out }}(1+s C R) \\
\frac{\mathrm{v}_{\text {out }}}{} & =H(s)=\frac{1}{1+s C R}
\end{aligned}
$$

Mathematica Hint

- Write down each node equation (here only one):

$$
\text { EQ1 }=\frac{\text { vin }- \text { vout }}{R}==\text { vout s C; }
$$

- Solve them:

$$
\begin{aligned}
& \text { Solve[EQ1, vout] // First } \\
& \left\{\text { vout } \rightarrow \frac{\text { vin }}{1+\text { CRs }}\right\}
\end{aligned}
$$

- Define a transfer function:

$$
\begin{aligned}
& \mathrm{H}\left[s_{-}\right]=\frac{\text { vout }}{\text { vin }} / \% \\
& \frac{1}{1+\mathrm{CRs}}
\end{aligned}
$$

Low Pass as 'complex' voltage divider

- The LowPass can be seen as a 'AC' voltage divider with two impedances $Z_{1}=R$ and $Z_{2}=1 / s C$
- Using the voltage divider formula, we get

$$
H(s)=\frac{\mathrm{v}_{\text {out }}}{\mathrm{v}_{\text {in }}}=\frac{\mathrm{Z}_{2}}{\mathrm{Z}_{2}+\mathrm{Z}_{1}}=\frac{\frac{1}{s C}}{\frac{1}{s C}+R}=\frac{1}{1+s R C}=\frac{1}{1+i \frac{\omega}{\omega_{0}}}
$$

with $\omega_{0}=1 /(R C)$, the 'corner frequency'.

- This is the same as before...

The HIGH Pass

- By exchanging R and C, low frequencies are blocked and high frequencies pass through.

- We get $H_{\text {HP }}(\mathbf{s})=\frac{\mathbf{R}}{\mathbf{R}+\frac{1}{\mathbf{s C}}}=\frac{\mathbf{s R C}}{1+\mathbf{s R C}}$
- This is the (first order) 'High-Pass'.

A More Complicated Example

- We now have two unknowns: v_{1}, $\mathrm{v}_{\text {out }}$

$$
\begin{aligned}
E Q 1\left(@_{\mathrm{v}_{1}}\right) & : \quad \frac{\mathrm{v}_{\text {in }}-\mathrm{v}_{1}}{R}=\left(\mathrm{v}_{1}-\mathrm{v}_{\text {out }}\right) s C \\
E Q 2\left(@_{\mathrm{v}_{\text {out }}}\right) & : \quad\left(\mathrm{v}_{1}-\mathrm{v}_{\text {out }}\right) s C+\frac{\mathrm{v}_{\text {in }}-\mathrm{v}_{\text {out }}}{R}=\mathrm{v}_{\text {out }} s C
\end{aligned}
$$

- Eliminating v_{1} gives:

$$
H(s)=\frac{1+2 R C s}{1+3 R C s+(R C)^{2} s^{2}}
$$

- This is a second order TF. (order = max. exponent of s)

The same using Mathematica

- Node equations (here 2):

$$
\begin{aligned}
& \text { EQ1 }=\frac{v i n-v 1}{R}==(v 1-\text { vout }) s C ; \\
& E Q 2=\frac{v i n-v o u t}{R}+(v 1-\text { vout }) s C==\text { vout sC; }
\end{aligned}
$$

- Solve them:

Solve[\{EQ1, EQ2\}, \{vout, v1\}] // First

$$
\left\{\text { vout } \rightarrow-\frac{- \text { vin-2CRsvin }}{1+3 C R s+C^{2} R^{2} s^{2}}, \text { v } 1 \rightarrow \frac{(1+3 C R s) \text { vin }}{1+3 C R s+C^{2} R^{2} s^{2}}\right\}
$$

- Define a transfer function:

$$
\begin{aligned}
& \mathrm{H}\left[s_{-}\right]=\frac{\text { vout }}{\text { vin }} / . \% / / \text { Simplify } \\
& \frac{1+2 \mathrm{CRs}}{1+3 \mathrm{CRs}+\mathrm{C}^{2} \mathrm{R}^{2} \mathrm{~s}^{2}}
\end{aligned}
$$

Transfer Function (TF)

- The transfer function of a linear, time invariant system visualizes how the amplitude and phase of a sine wave input signal of constant frequency ω appears at the output
- The frequency remains unchanged
- The transfer function $H(\omega)$ contains
- The phase change $\Phi(\omega)$
- The gain $v(\omega)=$ amp_in / amp_out (ω)

Bode Diagram: Definition

- The Bode Plot shows gain (+ phase) of the transfer function
- The frequency (x-axis) is plotted logarithmically
- Gain is plotted (y-axis) logarithmically, often in decibel

$$
\text { - } \mathrm{DB}(\mathrm{x})=20 \log _{10}(\mathrm{x}):
$$

$$
\times 10+20 \mathrm{~dB}
$$

$$
\times 100+40 \mathrm{~dB}
$$

$$
\times 2 \quad 6 \mathrm{~dB} \quad \text { (not exactly!) }
$$

$$
\times 10 \mathrm{~dB}
$$

$$
12-6 \mathrm{~dB}
$$

$$
/ \sqrt{2} \quad-3 \mathrm{~dB}
$$

- dBs for multiplied quantities just add!

Bode Diagram: Properties

- Power functions are straight lines:

$$
f(x)=x^{n} \Rightarrow \log [f(x)]=n \log (x)
$$

$\operatorname{Plot}\left[x^{2},\{x, 0,10\}\right]$
$\operatorname{LogPlot}\left[x^{2},\{x, 0,10\}\right]$
LogLogPlot[$\left.x^{2},\{x, 1,10\}\right]$

LogLogPlot[Table[$\left.\left.\mathrm{x}^{\mathrm{N}},\{\mathrm{N},-1,3\}\right],\{\mathrm{x}, 1,10\}\right]$

Bode Diagram: Properties

- 1/x function has slope -1 :

$$
f(x)=\frac{1}{x}=x^{-1} \Rightarrow \log [f(x)]=-1 \log (x)
$$

- Multiplied functions are added in plot:

$$
f=f_{1} \cdot f_{2} \Rightarrow \log [f]=\log \left(f_{1}\right)+\log \left(f_{2}\right)
$$

$f 1=2+x ; f 2=x^{-1} ;$

Analysis of the Low Pass Transfer Function

- Transfer Function: $\quad H(\omega)=\frac{1}{1+i \frac{\omega}{\omega_{0}}} \quad$ with $\mathrm{w}_{0}=1 / \mathrm{RC}$
- Magnitude: $\quad v(\omega)=\sqrt{H(\omega) H^{*}(\omega)}=\frac{1}{\sqrt{\left(1+i \frac{\omega}{\omega_{0}}\right)\left(1-i \frac{\omega}{\omega_{0}}\right)}}$

$$
v(\omega)=\frac{1}{\sqrt{\left(1+\frac{\omega^{2}}{\omega_{0}^{2}}\right.}} \quad \begin{aligned}
& \rightarrow \frac{1}{} \quad \text { for } \omega \rightarrow 0 \\
& \rightarrow \frac{\omega_{0}}{\omega} \text { for } \omega=\omega_{0} \\
& \text { for } \omega \rightarrow \infty
\end{aligned}
$$

- Phase:

$$
\begin{gathered}
H(\omega)=\frac{1}{1+i \frac{\omega}{\omega_{0}}}=\frac{1}{1+i \frac{\omega}{\omega_{0}}} \times \frac{1-i \frac{\omega}{\omega_{0}}}{1-i \frac{\omega}{\omega_{0}}}=\frac{1-i \frac{\omega}{\omega_{0}}}{1+\frac{\omega^{2}}{\omega_{0}^{2}}} \\
\varphi=\operatorname{atan}\left(\frac{\operatorname{lm}(H)}{\operatorname{Re}(H)}\right)=-\operatorname{atan}\left(\frac{\omega}{\omega_{0}}\right) \quad \text { (rad or degree) }
\end{gathered}
$$

Bode Plot of LowPass (Amplitude)

The same in dB

Bode Plot of LowPass (Phase)

- $\omega_{0}=10$
- Lin-Log Plot!

Phase

Where is the Corner?

$$
H(\omega)=\frac{1}{1+i \frac{\omega}{\omega_{0}}}
$$

- At the corner frequency $\omega_{0}=1 /(R C)$:
- The impedance of the capacitor is

$$
1 /(\mathrm{sC})=1 /\left(\mathrm{i} \omega_{0} \mathrm{C}\right)=\mathrm{R} / \mathrm{i}
$$

with absolute value R.

- Therefore: At the corner frequency, the (absolute value) of the impedances of the capacitor and the resistor are the same.
- C becomes 'more important' than R

Series Connection of two Low Pass Filters

- Consider two identical LP filters. A ‘unit gain buffer’ makes sure that the second LP does not load the first one:

- From the properties of the LogLog Plot, the TF of the $2^{\text {nd }}$ order LP is just the sum of two $1^{\text {st }}$ order LPs:

Why bother so much about the low pass ?

- All circuits behave like low-passes (at some frequency)!

Caveat!

- So far, frequency is expressed with ω, i.e. in radian / second
- We have: $\omega=2 \pi v$
- Therefore, the frequencies in Hertz are 2π lower!!!

Low Pass and High Pass

$$
\operatorname{LP}[\omega]=\frac{1}{1+\dot{i} \frac{\omega}{\omega 0}}
$$

$$
\operatorname{LPgain}(\omega)=\frac{1}{\sqrt{1+\left(\frac{\omega}{\omega 0}\right)^{2}}}
$$

$$
\mathbf{H P}[\omega]=\frac{\dot{\mathbf{i}} \frac{\omega}{\omega 0}}{1+\dot{\text { i }} \frac{\omega}{\omega 0}} ;
$$

Bode Plots with Mathematica

- Replace s by i ω
- Calculate (squared) gain as absolute value

$$
\text { gain2 }=\mathrm{H}[\dot{\mathrm{I}} \omega] \text { Conjugate }[\mathrm{H}[\dot{\mathrm{i}} \omega]] / / \text { ComplexExpand // Simplify }
$$

$$
\frac{1+4 C^{2} R^{2} \omega^{2}}{1+7 C^{2} R^{2} \omega^{2}+C^{4} R^{4} \omega^{4}}
$$

- To plot, convert to dB by taking $20 \log _{10}[\sqrt{ } \mathrm{H}]$.
- The sqrt can be eliminated by using $10 \log _{10}[\mathrm{H}]$

LogLinearPlot [10 Log[10, gain2] /. $\{R \rightarrow 1, C \rightarrow 1\},\{\omega, 0.01,100\}$
, PlotRange \rightarrow \{-20, 2\}, Filling \rightarrow-20]

- For phase, better use ArcTan[Re,Im] to get quadrant right
$\operatorname{LogLinearPlot}\left[\frac{180}{\pi} \operatorname{ArcTan}[\operatorname{Re}[H[\dot{i} \omega]], \operatorname{Im}[H[\dot{i} \omega]]] / .\{R \rightarrow 1, C \rightarrow 1\},\{\omega, 0.01,100\}\right]$

A More Complex Example

- Consider a (High Pass) filter with an inductor:

- The transfer function is $H(s)=\left(C L s^{2}\right) /\left(1+C R s+C L s^{2}\right)$
- It is of 'second order' (s has exponent of 2 in denominator)
- Magnitude:
$\mathrm{L}=\mathrm{C}=1$
$R=0.1,0.5,1,2$
- 'Resonance’
- 'Inductive peaking'

Phase

- Phase

- For fun:
- When is filter steep \& flat?
- Zoom to corner frequency:

CIRCUIT SIMPLIFICATIONS

Large and Small Values

- To roughly understand behavior of circuits, only keep the dominant components:

- Eliminate larger or the smaller part (depending on circuit!)
- Error ~ ratio of components

The same for Capacitors

Resistors AND Capacitors

- Behavior depends on frequency ($\left.\left|Z_{C}\right|=1 /(2 \pi \nu C)\right)$

