

Exercise: First Simulations

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

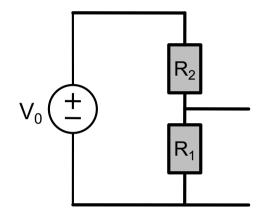
Exercise 1: High Pass – AC Analysis

- Create a HighPass circuit
 - Use a voltage source, ground symbol, res (1k), cap (1n)
 - Make sure the voltage source has 'AC Magnitude' set to 1
- What is the corner frequency of your circuit (in Hertz!)?
- Chose an AC analysis with frequency span 2-3 orders of magnitude around the corner.
- Plot the Magnitude of the output
- Check that the -3dB point is exactly what you expect!
- Change component values, predict the effect and simulate.
- Make the circuit more complicated (add more Rs and Cs)

Exercise 2: High Pass & Rectangular Pulse

- Now use a rectangular pulse generator (vpulse)
 - Set the various parameters of vpulse
 - Chose the frequency much slower than the RC time
 - How does the output waveform look like?
 - When has the signal decreased to 1/e of the input step?
 - Is this what you expect from the component values?
 - Double the resistor and check what happens!

Exercise 3: High Pass & Sine Input


- Replace the rectangular generator by a sine wave generator ('vsin')
 - Set the delay time and offset to 0, the amplitude to 1V
 - What is the output of the high-pass circuit for a sine frequency
 ~10 x lower or ~10x higher than the corner frequency?
 - What is the output amplitude exactly at the corner frequency?
 - What is the phase shift between input and output at the corner frequency?
 - Try to run a parametric analysis, changing the value of the capacitor (or the resistor)

Exercise 4:

 Calculate the Thénevin Equivalent of a voltage source followed by a general resistive divider (again)

- Simulate this circuit for some values of R₁ and R₂
 - Connect a voltage source (or a current source) to the output and change its value with a dc sweep
 - Use an 'idc' current source and a 'vdc' voltage source
 - In dc sweep, select 'sweep component value' add chose 'dc'
 - OR: Use a design variable for the dc part of the source and sweep the design variable.
- Now simulate the equivalent circuit!
 - Best simulate both in parallel to compare