

Exercise: First Simulations

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

Exercise 1: High Pass – AC Analysis

- Create a HighPass circuit
 - Use a voltage source, ground symbol, res (1k), cap (1n)
 - Make sure the voltage source has 'AC Magnitude' set to 1
- What is the corner frequency of your circuit (in Hertz!) ?
- Chose an AC analysis with frequency span 2-3 orders of magnitude around the corner.
- Plot the Magnitude of the output
- Check that the -3dB point is exactly what you expect!
- Change component values, predict the effect and simulate.
- Make the circuit more complicated (add more Rs and Cs)

Solution 1: High Pass – AC analysis

• RC = 1k×1n = 1 $\mu \rightarrow \omega$ = 1 MHz $\rightarrow \nu$ = 1/2 π MHz = 159 kHz

Exercise 2: High Pass & Rectangular Pulse

- Now use a rectangular pulse generator (vpulse)
 - Set the various parameters of vpulse
 - Chose the frequency much slower than the RC time
 - How does the output waveform look like ?
 - When has the signal decreased to 1/e of the input step?
 - Is this what you expect from the component values?
 - Double the resistor and check what happens!

Solution 2: High Pass & Rect

• Circuit:

• For R = 1k, RC = 1k × 1n = 1 μ ($\Leftrightarrow \omega$ =1 MHz) \rightarrow Use 10 µs period. Edge starts here at 1µs

CCS Exercise: Simulation

Solution 2: High Pass & Rect

Double the resistor with a parametric sweep:

Result:

Exercise 3: High Pass & Sine Input

- Replace the rectangular generator by a sine wave generator ('vsin')
 - Set the *delay time* and *offset* to 0, the *amplitude* to 1V
 - What is the output of the high-pass circuit for a sine frequency ~10 x lower or ~10x higher than the corner frequency?
 - What is the output amplitude *exactly* at the corner frequency?
 - What is the phase shift between input and output at the corner frequency?
 - Try to run a parametric analysis, changing the value of the capacitor (or the resistor)

ruprecht-karls-UNIVERSITÄT HEIDELBERG

Solution 3: High Pass & Sine Input

CCS Exercise: Simulation

ruprecht-karls-UNIVERSITÄT HEIDELBERG

Solution 3: High Pass & Sine Input

• At v = 159 kHz (period = $2\pi \ \mu s = 6.28 \ \mu s$)

Phase shift: 9.45 µs – 8.66 µs = 0.79 µs ~ 1/8 period

Solution 3: High Pass & Sine Input

Parametric Analysis (R=0.1 / 1 / 10k)

Observation: Amplitude / Phase hard to see…
 → Better use AC sweep

 Calculate the Thénevin Equivalent of a voltage source followed by a general resistive divider (again)

- Simulate this circuit for some values of R₁ and R₂
 - Connect a voltage source (or a current source) to the **output** and change its value with a dc sweep
 - Use an 'idc' current source and a 'vdc' voltage source
 - In dc sweep, select 'sweep component value' add chose 'dc'
 - OR: Use a design variable for the dc part of the source and sweep the design variable.
- Now simulate the equivalent circuit!
 - Best simulate both in parallel to compare

For given output voltage, Currents in R₁ an R₂ are defined They just add

- To find V₀, consider $I_{out} = 0$ (no connection) $\rightarrow V_{out} = V_0 = I_0 R_1$
- To find R_V , make a short $\rightarrow I_{out} = I_0$

$$\rightarrow I_{short} = V_0 / R_V = I_0$$

$$\rightarrow R_V = V_0 / I_0 = R_1$$

