Exercise: Making a Steep Filter

Prof. Dr. P. Fischer
Lehrstuhl für Schaltungstechnik und Simulation
Uni Heidelberg

Exercise

- Just for fun, we want to design a steep Butterworth Low Pass filter
- Let the corner frequency be 1 MHz
- Let's chose order N=6
- Implement it using 'Sallen and Key' stages with k=1

- After you have derived component parameters for the 3 filter stages, simulate the result.

Hints

- The poles of a Butterworth filter are placed on the left half circle with equal angles (see slide 'choosing the poles' in the lecture), i.e. with $d \phi=\pi / \mathrm{N}$ and $\mathrm{r}=\omega$.
- Each complex-conjugate pair of poles is handled by one $2^{\text {nd }}$ order 'Sallen and Key' filter. So we need N/2 stages.
- Each filter (with dc gain 1) has a general transfer function of $1 /\left(1+s / p_{a}\right)\left(1+s / p_{b}\right)=1 /\left(1+a s+b s^{2}\right)$ where p_{a} and p_{b} are the two complex conjugate poles.

Steps

- Step1:

- Given a pole pair, we want to know the transfer function
- Write $p_{a}=r(\operatorname{Sin}(\phi)+i \operatorname{Cos}(\phi)), p_{b}=\ldots$
- From p_{a} and p_{b}, calculate a, b

- Step2:

- Our filter has 4 parameters (R1,R2,C1,C2), but its behaviour is described by 2 (e.g. corner, peaking), there are several ways to implement it. For example:
- Set R1=R2=R and C2 = 1nF. This leaves us with 2 parameters
- Derive the transfer function of a filter stage
- Step3:
- For a given (r, ϕ) and thus (a,b), derive R and C 1 by equating the coefficients of s and s^{2}.
- Step 4:
- Derive (r, ϕ) for each pole-pair of the Butterworth and get R and C1 for that filter stage.

Step 1

\$Assumptions = $\mathrm{r}>0 \& \& \phi \in$ Reals; (* needed for Conjugate [] *)
Assume we have a complex conjugate pole pair $\left(p_{a}, p_{b}\right)$ with radius r and angles $\pm \phi$:
$\ln [8]:=p_{a}=r(\operatorname{Cos}[\phi]+\dot{i} \operatorname{Sin}[\phi]) ; p_{b}=\operatorname{Conjugate}\left[p_{a}\right] / / \operatorname{Simplify} ;\left\{p_{a}, p_{b}\right\}$
$\operatorname{Out}[8]=\{r(\operatorname{Cos}[\phi]+i \operatorname{Sin}[\phi]), r(\operatorname{Cos}[\phi]-i \operatorname{Sin}[\phi])\}$

Den $=\left(1+\frac{s}{p_{a}}\right)\left(1+\frac{s}{p_{b}}\right) / /$ Simplify (* This is the denominator of the TF *)
$O u t[11]=\frac{r^{2}+s^{2}+2 r s \operatorname{Cos}[\phi]}{r^{2}}$
$s \quad s^{2}$
$\ln [13]:=\{\mathbf{a}, \mathbf{b}\}=$ Table[SeriesCoefficient [Den, $\{s, 0, k\}],\{k, 1,2\}]$
Out[13]=\{ $\left\{\frac{2 \operatorname{Cos}[\phi]}{r}, \frac{1}{r^{2}}\right\}$

This function finds a Taylor coefficient of function 'Den'. It assumes variable s, expands at 0 and looks for degree k

Step 2a

- General Derivation of H[s]:

$\ln [39]:=E Q 1=\frac{v i n-v 1}{R 1}==\frac{v 1-v 2}{R 2}+(v 1-v o u t) s C 1$;
$E Q 2=\frac{v 1-v 2}{R 2}=v 2 \mathrm{sC2}$;
EQ3 $=$ vout $=\mathrm{kv}$ v;
$\operatorname{In}[42]:=$ Eliminate[\{EQ1, EQ2, EQ3\}, \{v1, v2\}] // Simplify
Out[42]= k vin $==(1+C 2(R 1+R 2) s+C 1 R 1 s(1-k+C 2 R 2 s))$ vout
$\ln [43]:=$ Solve[\%, vout] // First
Out[43] $=\left\{\right.$ vout $\left.\rightarrow-\frac{k \text { vin }}{-1-\text { C1 R1s -C2 R1s +C1kR1s - C2 R2 s - C1 C2 R1 R2 } s^{2}}\right\}$
$\ln [44]:=H\left[s_{-}\right]=\frac{\text { vout }}{\text { vin }} / . \% / . k \rightarrow 1 / /$ Simplify
Out[44] $=\frac{1}{1+C 2 s(R 1+R 2+C 1 R 1 R 2 s)}$

Step 2b and 3

- Now fix R1=R2=RR, C2 $=1 \mathrm{nF}$ and $\mathrm{C} 1=\mathrm{CC}$
- For some reason using C1 etc. in Mathematica causes trouble.. I have not yet found out why. So I use RR and CC....
$\ln [127]:=$ Coef $=$ Table $\left[\right.$ SeriesCoefficient $\left.\left[\frac{1}{H[s] / .\left\{R 1 \rightarrow R R, R 2 \rightarrow R R, c 2 \rightarrow 10^{-9}, c 1 \rightarrow C C\right\}},\{s, 0, k k\}\right],\{k k, 1,2\}\right]$

Step 4

This is the angle for one of the two partners of a pair.
$\ln [7]]=$ ORDER $=6$;
$\operatorname{In}[206]=\operatorname{ComplexListPlot}\left[\operatorname{Table}\left[-\left\{\mathrm{p}_{\mathrm{a}}, \mathrm{p}_{\mathrm{b}}\right\} / .\left\{r \rightarrow 1, \phi \rightarrow(2 \mathrm{k}-1) \frac{\pi}{2 \text { ORDER }}\right\},\left\{\mathrm{k}, 1, \frac{\text { ORDER }}{2}\right\}\right]\right.$
, PlotRange $\rightarrow\{\{-1.1,1.1\},\{-1.1,1.1\}\}$
, AspectRatio \rightarrow 1, Frame \rightarrow True, ImageSize \rightarrow Small, PlotMarkers \rightarrow Automatic]

Angle is $\pi /$ ORDER
Out 2063$)=$
0.0

Finally we get
Rsol and Csol for the 3 stages!
$\ln [207] \mathrm{y}=\operatorname{Table}\left[\left\{\right.\right.$ Rsol, $\left.\frac{\mathrm{C} 1 \mathrm{sol}}{\mathrm{nF}}\right\} / \cdot\left\{\mathrm{r} \rightarrow 2 \pi 10^{6}\right.$. $\left.\left.(2 \mathrm{k}-1) \frac{\pi}{2 \text { ORDER }}\right\},\left\{\mathrm{k}, 1, \frac{\text { ORDER }}{2}\right\}\right] / / \mathrm{N}$
Out[207] $=\{\{153.732,1.0718\},\{112.54,2\},.\{41.1923,14.9282\}\}$

Simulation

- Schematic:

