

Analogue Simulation

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

Simulators

- There are many programs around to simulate analogue circuits. One of the first (1968, UC Berkeley, IBM) was SPICE
 - Simulation Program with IC Emphasis
- All simulators use a text file ('netlist') to describe the circuit
 - Main elements are *components* which connect *nodes* Component (Name/Type) <nodes> <parameters>
 - The syntax varies (slightly)

- The behavior of the components is described by 'models'
 - These are rather trivial for capacitors, resistors (they can contain temperature dependence, for instance)
 - They can be VERY complicated for transistors...
- Models are (should be) provided by the manufacturer of the components (Op-Amps, transistors..)
 - We will uses models of the chip technology UMC 180 nm
- The significance of a simulation results depends on the quality of the models!
 - Do not trust your result too much!
 - Agreement (simulation vs. reality) to within 10% is very good!
 - Make sure your circuit is robust and does not rely on perfect agreement to simulation!

- The netlist contains
 - the circuit components
 - a ground node (with net name '0')
 - voltage / current sources to supply the circuit
 - pulse generators to 'stimulate' the circuit

Common errors:

- No supply voltage (in active circuits)
- Current in circuit is zero ('operation point' is wrong)
- No ground node defined (voltages are 'strange')
- No input stimulus (source may be there, but its parameter not set, see later)
- Component values are completely off (Ampère instead uf μA)
- Typos in parameters ('10 us s')

COMPONENTS

Passive Components (in analogLib)

- Resistors
 - Very simple. Can add model. Can add temperature dependence. Can generate noise during simulation
- Capacitors
 - Can define an 'initial' condition, i.e. its voltage when simulation starts

	Edit Object Properties	
Apply To only	current 💟 instance 💟	
Show 🔲 sy	ystem ⊻ user ⊻ CDF	
Browse	Reset Instance Labels Display	
Property	Value	Display
Library Name	analogLib	off
Cell Name	cap	off
View Name	symbol	off
Instance Name	e CO	off
	Add Delete Modi	fy)
CDF Parame	ter Value	Display
Model name		off
Capacitance	ln F	off
		(
Width		off
Width Length		off
Width Length Multiplier		off off off
Width Length Multiplier Scale factor		off off off
Width Length Multiplier Scale factor Temp rise from ambient		off off off off

(Independent) Sources

- DC voltage source vdc
 - ideal source $(R_0 = 0)$
 - Must SET voltage
 - (Can also add AC)

_vdc=1.8 Ŧ acm=1

CDF Parameter					
Noise file name					
Number of noise/freq pairs		0			
DC voltage	<	1.8 V	>		
AC magnitude	<	1 V	>		

- DC current source idc
 - ideal

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

- Must SET current
- Second pin provides –I0 Not really needed (best short to ground)
- (Can also add AC)

Global Nets (analogLib \rightarrow Sources \rightarrow Globals)

- There are special symbols which connect the pin to some 'global' net.
 - Global nets end with '!' in Cadence (e.g. gnd!, VDD!)

(Dependent) Sources

- There are voltage / current sources which can be controlled by a voltage (or current)
- These are very useful in simulation to simplify stuff
- Example1: Voltage Controlled Voltage Source VCVS
 - Vout = gain * Vin
 - Gain has no dimension (volt / volt)
 - This is an (ideal) voltage amplifier

- Example2: Voltage Controlled Current Source VCCS
 - This is an idealized model of a transistor!
 - Gain is in Ampère / Volt (i.e. Siemens) ('ggain' in Mhos in Cadence)

'Active' (independent) Sources

- There are sources which act as signal generators (in 'tran' simulations, see later):
 - Vpulse generates rectangular signals
 - Vsin generates sine waves
 - Vpwl generates piece-wise-linear signals
- These have several parameters that must be set.
 - Check out!
- They ALSO have DC and AC components for simple simulations

SIMULATION TYPES

.OP analysis

- This is a static analysis, i.e. time plays no role
 - Imagine you 'switch on the circuit' and observe the steady state
 - All capacitors are removed from the circuit
 - Inductors are reduced to their ohmic resistance
- All nonlinearities (diodes, MOS,..) are considered
 - It is a 'large signal analysis'
- An iterative procedure is used to find a stable steady state
 - Initial conditions (of capacitors or from the simulation window) are taken into account
- .OP is done 'automatically' before other simulations start
- .OP can fail
 - Shorted voltage sources
 - Open current sources

DC Analysis

- This is just a series of .OP analysis
- One parameter is changed in each analysis
 - voltages
 - temperature
 - component values (design variables)
- It uses the 'DC voltage' and 'DC current' of sources
- Used mainly to determine the operation point of a circuit

DC Analysis: Example 1

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

Which voltage Vin is required in this circuit to get vout=1V ?

Perform a DC sweep of Vin:

Choosing Ar	alyses -	- Virtu	oso®	Analog	Desig	n E 📀	
Analysis O O O O O O O O O O O O O	tran ×f pz pac psp qp×f hbnoise	 dc sen sp pstt qps qps hbs 	5 0 5 0 5 0 5 0 5 0 7 0 7	ac dcmatch envlp pnoise qpac hb	 no sti ps p> qi ht 	bise b ss d onoise bac	
		DC A	nalysi	s			
Save DC Opera Hysteresis Swee	ting Point p		1				
Sweep Variabl Temperature Design Vari Component Model Para	e able Paramete meter	v er 🧉	ariabl	e Name Select Di	Vin esign \	/ariable	
Sweep Range Start-Stop Center-Spa Sweep Type Automatic	si n	tart 0		5	itop	4	
Add Specific Po	ints 🔛						
Enabled 🖌	ОК	Car	ncel	Default	ts (Option Apply	s Help

DC Analysis: Example 2

• How does the current in a diode depend on its voltage?

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

• How does the diode current at 0.8V depend on temperature?

Transient Analysis

- Large signal analysis (all nonlinearities are considered)
- Generates voltages/currents as a function of time
 - Like an oscilloscope trace...
 - All caps / inductors are considered (including voltage dependencies...)
 - Most complicated (slowest) analysis
- Changes in circuit are updated in small time steps
 - Modern programs adapt the time steps to the activity in the circuit
 - NOTE: very fast signals require very fine time steps -> simulation becomes slow.
 - DO NOT make signals (outputs of vpulse) faster than needed
- Operation point is determined by a preceding .OP analysis

Transient Analysis: Example

• How does a low pass react to a triangular input ?

Transient Simulation: Example

• The same at high input frequency (TR = TF = 10ns):

Do you understand what happens?

CCS: Simulation

AC Analysis

- This LINEAR analysis works in the frequency domain
- It assumes ALL components linear
- 1. First the operation point is determined
 - How much current flows in a diode
 - What is the voltage at each node,...
- 2. R,C,L of all components at this operation point is determined
 - C of a capacitor can depend on voltage
 - internal resistance of a diode depends on current,...
- 3. ONLY these values are kept, i.e. the circuit is **linearized**
- 4. The transfer functions (to all nodes) are **calculated**
- AC Magnitude and Phase are used in sources
 - It make no difference weather you use 1 V or 1 mV, best use 1 V!

AC Analysis: Example

