Exercise: Abstract Circuits

Prof. Dr. P. Fischer
Lehrstuhl für Schaltungstechnik und Simulation
Uni Heidelberg

Exercise 1: voltage controlled current source

- The drain current in a transistor depends on the gate voltage. It can therefore be considered as a voltage controlled current source 'vccs'
- In the analogLib, the vccs has a differential input and two outputs of opposite signs:

$i_{1}=G\left(v_{+}-v_{-}\right), i_{2}=-i_{1}$
- Set up the following circuit
- Use a vccs with gain = $100 \mu \mathrm{~S}$
- Connect v_{-}to ground and v_{+}to $a \operatorname{dc}$ voltage V_{IN}
- Connect the i_{1} and i_{2} outputs to $\mathrm{V}_{\text {OUT1 }}=1 \mathrm{~V}$ and $\mathrm{V}_{\text {OUT2 }}=1 \mathrm{~V}$
- Now
- Sweep VIN (DC sweep, for instance from -1V to 1V) and observe the currents in the output voltage sources. Change the gain of the vccs and observe the effect.
- Does the output current for a given $\mathrm{V}_{\text {IN }}$ depend on the $\mathrm{V}_{\text {OUT }}$?

Solution 1

- The output current of these ideal sources does not depend on the output voltage

Exercise 2: Idealized Amplifier 1

- Implement the following circuit:
- The current from the vccs is sent to a resistor R
- Start with
- $G=100 \mu \mathrm{~S}$
- $\mathrm{R}=2 \mathrm{k} \Omega$
- $\mathrm{V}_{0}=1 \mathrm{~V}$

- Simulate:
- How does $\mathrm{v}_{\text {OUt }}$ change when v_{IN} changes (e.g. from 0 to 1 V)?
- Explain (Calculate)! Write down the current equation at node $v_{\text {out }}$ and use $i_{\text {vccs }}=G v_{\text {in }}$
- What is the gain of the circuit $d V_{\text {OUT }} / d V_{\mathbb{N}}$?
- Change R and G in your simulation. Is the effect as expected (as calculated)?

Solution 2

- The output voltage is

$$
V_{\text {out }}=V D D-R \times I=V D D-R G V_{\text {in }}
$$

- The gain (slope) is $v=d V_{\text {out }} / d V_{\text {in }}=-R G$
- Changing R (0, $1 \mathrm{k} \Omega, 2 \mathrm{k} \Omega$):

Exercise 3: Idealized Amplifier 2

- In the previous circuit, change V_{0}. What happens with the $D C$ offset of the output and with the gain? Explain!
- So, what is the difference between the following two circuits A, B ?

$$
\mathrm{B}\left(=\mathrm{A} \text { with } \mathrm{V}_{0}=0\right)
$$

- PREDICT the gain $\left(\mathrm{V}_{\mathrm{IN}} \rightarrow \mathrm{V}_{\text {OUT }}\right)$
of the following circuit (Thénevin!):
- Verify this by simulation (for instance R1 = $1 \mathrm{k} \Omega, \mathrm{R} 2=2 \mathrm{k} \Omega$)
- What happens when you exchange R1 and R2?

Solution 3

- Changing VDD just changes the offset (i.e. shifts the curve up and dowr
- With the ideal source, the circuit also works at $\mathrm{VDD}=0 \mathrm{~V}$.
- The gain of the two circuit is the same. For a gain analysis, we can drop VDD for simplicity!

- $V_{0} / R_{1} / R_{2}$ can be replaced by $V_{\text {eq }} / R_{\text {eq }}$. $R_{\text {eq }}$ is $R_{1} \| R_{2}$. $V_{\text {eq }}$ is irrelevant for gain. Gain becomes $G R_{\text {eq }}$.
- Gain is -100uA $\times 2 \mathrm{k} \Omega / 3=-0.066$.
- Swapping R_{1} / R_{2} makes no difference!

Exercise 4: Idealized Amplifier 3

- Load the output with a capacitor (1 pF) to ground (left) and make an ac sweep. What is the dc gain?
-Where is the corner frequency? Why?

- Now try the right circuit. Is there a difference? Explain!
- Draw an equivalent circuit without V_{0} !

Solution 4

- Remember to add an ac component to $\mathrm{V}_{\text {in }}$!

- We see a Low Pass behavior
- DC gain is $100 \mathrm{u} \times 2 \mathrm{k}=0.2$
- Corner is at $\omega=1 / R C=1 / 2 \mathrm{n}=500 \mathrm{M} \rightarrow v=500 \mathrm{M} / 6.28=79.6 \mathrm{MHz}$
- Derivation by current sum at $\mathrm{v}_{\text {out }}$:

$$
\begin{aligned}
& \text { - } G v_{\text {in }}+v_{\text {out }} / R+v_{\text {out }} S C=0 \\
& \rightarrow v_{\text {out }} / v_{\text {in }}=-\frac{G R}{1+C R s}
\end{aligned}
$$

Exercise 5 (advanced!): More capacitors

- Consider this circuit with an extra C_{1} between $\mathrm{V}_{\mathbb{I N}}$ and $\mathrm{V}_{\text {OUT }}$

- Draw the circuit without V_{0} !
- What gain do you expect at dc ? Sign?
- What gain do you expect for very high frequencies? Sign?
- Calculate the transfer function $\mathrm{H}[\mathrm{s}]$ and the gain
- Verify your predictions
- Simulate the circuit

Exercise 5 cont. (For fun)

- Where is the pole, where is the zero?
- Chose the resistor value such that the pole and the zero are at the same frequency.
- Does that always work?
- What is the DC gain?
- How does the transfer function look like?
-What is the gain of the circuit vs. frequency?

Solution 5

- All elements to VDD to to ground:

- Gain at DC (no caps) should be as before -GR
- At high frequencies, impedances of C dominate. We have a capacitive divider with gain $+\mathrm{C}_{1} /\left(\mathrm{C}_{1}+\mathrm{C}_{\mathrm{L}}\right)$ (positive!)

- Derivation (current sum at $\mathrm{v}_{\text {out }}$):

$$
\begin{aligned}
& \text { Solve [(vout - vin) s C1 + G vin } \left.+\frac{\text { vout }}{R}+\text { vout } s C=0 \text {, vout }\right] \\
& v=-G R \frac{1-\frac{C 1}{G} s}{1+R(C L+C 1) s} \quad \begin{array}{lll}
v / . s \rightarrow 0 & \operatorname{Limit}[v, s \rightarrow \infty] \\
& -G R & \frac{C 1}{C 1+C L}
\end{array}
\end{aligned}
$$

Solution5

$$
v=-R G \frac{1-C 1 / G s}{1+R(C L+C 1) s}
$$

$$
\log \left[\mathrm{v}_{\text {OUT }}\right] \quad \mathrm{p}<\mathrm{z}
$$

- We have a pole at $p=1 / R\left(C_{1}+C_{L}\right)$ and a ZERO at $z=G / C_{1}$
- Gain changes from negative to positive!
- Bode Plot depends on weather pole or zero is higher frequency

Example for $p>z$:

$G=100 u, R=100 k, C_{1}=0.1 p, C_{L}=1 p$
$p=1 / R\left(C_{1}+C_{L}\right) \sim 1 / R C_{L}=10 M H z$
$z=G / C_{1}=1 G H z$

Solution 5

- Setting pole and zero equal is always (i.e. for all values of C1, CL, G) possible:
$\ln [48]:=$ Solve[z=: $\mathbf{p}, \mathrm{R}]$
Out[48] $=\left\{\left\{R \rightarrow \frac{C 1}{(C 1+C L) G}\right\}\right\}$
- (Note: This is not the case for, e.g., CL, which may have to be negative..) mafole solve $[z=p, c \mathrm{c}] / / / \mathrm{simplify}$

$$
\text { onf(0) }\left\{\left\{\left\{\mathrm{CL} \rightarrow \mathrm{C}_{1}\left(-1+\frac{1}{6 \mathrm{R}}\right)\right\}\right\}\right.
$$

- The DC gain is -C1/(C1+CL):

```
ln[49]:= v /. R -> Requal /.s }\boldsymbol{->}0\mathrm{ // Simplify
Out[49]= - C1
```

- The transfer function is just
$-\frac{C 1}{C 1+C L} \frac{G-C 1 s}{G+C 1 s}$

Solution 5

- The s-part of this function has the form (1-ks)/(1+ks).
- With $\mathrm{s}=\mathrm{i} \omega$, the absolute value is calculated by multiplying with the complex conjugate, i.e.

$$
\frac{1-k \text { in } \omega}{1+k \dot{\text { i }} \omega} \frac{1+k \dot{\text { i }} \omega}{1-k \dot{\text { in }} \omega}
$$

which is 1 .
Therefore, the (absolute value) of the gain is constant!

- But the phase changes from inverting (180°) to noninverting $\left(0^{\circ}\right)$. Funny!

Solution 5

- We can simulate this with $\mathrm{C} 1=\mathrm{CL}=1 \mathrm{pF}, \mathrm{G}=1 \mathrm{uS}$-> $\mathrm{R}=500 \mathrm{k}$ yielding corners of 1 MHz .

- This can also be seen in a transient sim. with a sine wave:

© P. Fischer, ZITI, Uni Heidelberg
Page 16

