

The pn-Diode

CCS: The pn Diode

© P. Fischer, ziti, Uni Heidelberg, Seite 1

A few Natural Constants

- q 1.602 × 10⁻¹⁹ C elementar
- k 1.381 × 10⁻²³ J/K Boltzma
- ε₀ 8.854 × 10⁻¹² F/m
- 4kT 1.657 × 10⁻²⁰ J
- U_T = kT/q = 25.9 mV

elementary charge Boltzmann constant vacuum susceptibility (Hint: C = ε_0 A/d, 1m x 1m x 1m: ~10pF) Noise Power density @ 300K Thermal voltage @ 300K

A few Constants for Silicon

 E_g N_{ato} N_i µ_e µ_h E_{cit} 	1.12	eV	band gap at 300K
	_m 5 x 10 ²²	cm ⁻³	atom density
	1.01 x 10 ¹⁰	cm ⁻³	intrinsic carrier density at 300K [*] ('old' value: 1.45)
	~1400	cm ² /Vs	electron mobility (@ low fields)
	~480	cm ² /Vs	hole mobility (v = μ E)
	~1	V/µm	critical field where mobility starts to drop
■ ^E Si	11.9		dielectric constant of silicon
■ E _{SiO2}	2 3.90		dielectric constant of silicon - dioxide
■ E _{max}	x ~ 3 × 10 ⁷	V/m	break through field strength
■ E _{eh}	3.6	eV	Av. Energy required to generate an e-h pair
 ρ λ α 	7.87	gcm ⁻³	density
	150	W / (mK)	thermal conductivity
	2.56	10 ⁻⁶ K ⁻¹	thermal expansion coefficient (compare Al: 23.1)

*Sproul AB, Green MA. Improved value for the silicon intrinsic carrier concentration from 275 to 375 K. Journal of Applied Physics. 1991;70:846-854. Available from: <u>http://link.aip.org/link/?JAP/70/846/1</u>

CCS: The pn Diode

© P. Fischer, ziti, Uni Heidelberg, Seite 3

	1																	18
1	1.01																	4.00
1	Wasserstoff	2											3	4	5		_	Helium
2	6.94	9.01 B O											10.81 P	12.01	14.01	15.999	18.998	20.18
2	Lithium	Beryllium											Bor	Kehlenstoff	Stickstoff	Saverstoff	Fluor	Neon
	22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
3	Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	SI	P	5	CI	Ar
	39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.70	63.55	65.38	69.72	72.61	74.92	78.96	79.90	83.80
4	K	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	Kalium 85.47	Calcium 87.52	Scandium 88.91	Titan 91.22	Vanadium 92.91	Chrom 95.94	Mangan (98)	Eisen 101.07	Cobalt 102.91	Nickel 106.42	Kupfer 107.87	Zink 112.41	Gallium 114.82	Germanium 118.71	Arsen 121.76	Selen 127.60	Brom 126.90	Krypton 131.29
5	Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
	Rubidium	Strentium	Yttrium	Zirconium	Niobium	Molybdän 193.94	Technetium	Ruthenium	Rhodium	Palladium	Silber	Cadmium	Indium	Zinn 207.2	Antimon 208.08	Tellur	led	Xenon
6	Cs	Ba	l a-l u	Hf	Та	W	Re	Os	Ir	Pt	Au	Ha	TI	Pb	Bi	Po	A12	Rm
Ŭ	Cäsium	Barium	Lu-Lu	Hafnium	Tantal	Wolfram	Rhenium	Osmium	Iridium	Platin	Gold	Quecksilber	Thallium	Blei	Bismut	Polonium	Astat	Radon
	(223)	(226)		(261)	(262)	(263)	(262)	(265)	(266)	(269)								
7	Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds								
	Francium	Radium		Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Oamatadtium			© Peter V	/ Mich - Exp	erimenta	Ichemie.de	a - Chemi	e erleben!
			138.01	140.12	144.24	144.24	(145)	150.36	151 07	167.05	158.03	162.50	164.03	167.26	168.03	173.04	174 07	1
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu	
			Lanthan	Cer	Praseodym	Neodym	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium	
			227.03	232.04	231.04	238.03	(237) D.I	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258) D.GD	(259) D.I.	(260)	
			AC	מו	Pa		qm	PU	AND	Gm	BK	C	2S	15m	Ma	NO	Lľ	
			Actinium	Thorium	Protectinium	Uran	Neptunium	Plutonium	Americum	Curlum	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium	

Silicon Crystal

Each atom has 4 bindings.

See VRML File Diamond.wrl

Face centered Cubic lattice

CCS: The pn Diode

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

The Diode (p-n-junction)

CCS: The pn Diode

© P. Fischer, ziti, Uni Heidelberg, Seite 6

Silicon: Crystal & Doping

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

The pn-junction (diode)

- Bringing together a p- and n doped region:
 - A depletion zone with no charge carriers is created
 - There is a space charge
 - -> There is an electric field

Origin of Depletion Layers

- We consider an idealized, 'abrupt' transition between n- and p- region (this is smooth in reality)
- Due to the concentration gradient, electrons diffuse from the n → p region (holes from p → n).
- The carriers compensate and we get depleted regions without mobile carriers
- The fixed, ionized atoms are positively charged in the n-region (negatively in the p-region)
- This leads to an electric field
- The field is associated with a electrostatic potential. This 'built in' potential depends only on doping.
- The field leads to a drift of electrons/holes backwards.
- The thickness of the depletion region is determined by the equilibrium between driftand diffusion currents
- In reality, the depletion zone drops more slowly to zero, but the transition region is small.

Derivation of the Build-In Voltage

Derivation steps (see extra file on web site for explanations)
(p(x)= hole density):

$$\begin{split} j_{Feld}(x) &= -j_{Diff}(x) \\ q \,\mu \, p(x) E(x) &= q \, D \frac{dp(x)}{dx} \\ &- \frac{q}{kT} dV(x) &= \frac{dp(x)}{p(x)} \\ &- \frac{q}{kT} \int_{V_p}^{V_n} dV(x) &= \int_{p_p}^{p_n} \frac{dp(x)}{p(x)} \\ &- \frac{q}{kT} (V_n - V_p) &= \ln \left(\frac{p_n}{p_p}\right) \\ V_{bi} \text{ is often also called} \\ V_{bi} := V_n - V_p &= \frac{kT}{q} \ln \left(\frac{p_p}{p_n}\right) \\ V_{bi} &= \left(\frac{kT}{q} \ln \left(\frac{N_A N_D}{n_i^2}\right) \\ &\approx \left[\log \left(\frac{N_A}{n_i}\right) + \log \left(\frac{N_D}{n_i}\right)\right] \times 60 \text{ mV} \\ \end{split}$$

NUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Applying an External Voltage

- An external voltage superimposes an additional field and thus changes the drift contribution
- The equilibrium *thickness is changed*
- When a positive voltage is applied to the p-side, the overall field is reduced, diffusion becomes stronger and ultimately an increasing current flows
 - To really understand this, solid state physics is required

• It turns out that
$$I_{D} = I_{S}(e^{U_{D}/U_{TH}} - 1)$$

- Diode current is exponential in a VERY wide range
- U_D = Diode applied to device (relative to n-Side)
- I_S = Saturation Current = Device property (mainly just size)
- U_{TH} = Thermal Voltage = k T / q = 25.9mV @ RT

• For I_S=0.1pA, U_{th} = 25.9 mV

No magic '0.6V' forward voltage, depends on 'scale'!

Thickness of Depleted Region (See also extra file)

Charge on both sides must be equal:

Note: Depletion is thick for LOW doping

CCS: The pn Diode

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

© P. Fischer, ziti, Uni Heidelberg, Seite 13

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Dependence on External Voltage

 For the considered *abrupt* junction (p changes to n with no transition), we have

$$x_d = \sqrt{\frac{2\epsilon}{q}} \frac{N_A + N_D}{N_A N_D} V_{bi} \sqrt{1 - \frac{V_{ext}}{V_{bi}}}$$

i.e. the thickness of the depletion region increases as the square root of the external voltage (for voltages »Vbi)

 $\scriptstyle \bullet$ Typical values on chips: $x_d \ll 1 \ \mu m$

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Capacitance

• The depletion region is a *parallel plate capacitor*

Diode Summary

- Diode is conducting when p-region is at positive voltage
- Forward current $I_D = I_S(exp(V_D/U_T) 1)$ increases x 10 every $60 \text{mV} (U_T = \text{kT/q} \sim 26 \text{mV} @ 300 \text{K})$
- E-Field is largest at the junction
- Potential increases quadratically (in constant doping)
- Depletion region grows towards low doped side.
- Growth with $\sqrt{}$ of applied voltage $\sqrt{\frac{2\epsilon}{q} \frac{V_{bi}}{N_D}}$
- Capacitance decreases with $1/\sqrt{1}$ of applied (reverse) voltage

DIODE MODEL

A pn-Diode on a Chip Wafer

- For instance: n-doped Si 'Wafer' is p-doped at the surface
- EACH pn junction forms a diode

Aluminium contacts

Cross section of an pn-junction on a wafer

Modell of the Diode

Capacitance

Is calculated by:

$$C(U) = A \cdot C_{j0} \cdot \left(1 - \frac{U}{V_{bi}}\right)^{-1/2} = A \cdot \mathbf{CJ0} \cdot \left(1 - \frac{U}{\mathbf{VJ}}\right)^{-\mathbf{M}}$$

- 3 Parameters:
 - CJ0 : capacitance per unit area at U=0V
 - **VJ** : diffusion voltage = built-in-voltage
 - m : 'grading coefficient'
- In more refined models, capacitance is the sum of
 - an AREA component (the bottom of the implant)
 - a SIDEWALL component (perimeter of the implant) Both contributions are added

$$C(U) = Area \cdot \mathbf{CJ0} \cdot \left(1 - \frac{U}{\mathbf{VJ}}\right)^{-\mathbf{M}} + Perimeter \cdot \mathbf{CJSW} \cdot \left(1 - \frac{U}{\mathbf{VJSW}}\right)^{-\mathbf{MSW}}$$

Important SPICE Parameters of the Diode

Parameter	Symbol	SPICE Name	Einheit	Default
Sättigungsstrom (Saturation current)	Is	IS	A	1e-14
Serienwiderstand (Series resistance)	R _s	RS	Ohm	0
Sperrschichtkapazität bei VD=0V (Zero bias junction cap.)	C _{j0}	CJ0	F	0
Exponent in Kapazitätsformel (Grading Coefficient)	m	М	-	0.5
Diffusionsspannnung (Junction Potential)	Φ ₀	τv	V	1
Emissionskoeffizient (Emission Coefficient)	n	N	-	1
Transitzeit (Transit time)	ττ	Π	S	0

- The values are for a unit size device. They are later multiplied by the diode AREA
- Transit time tells how long it takes for carriers to pass the depletion region.

Simple Small Signal Model

Determine the slope at the working point:

