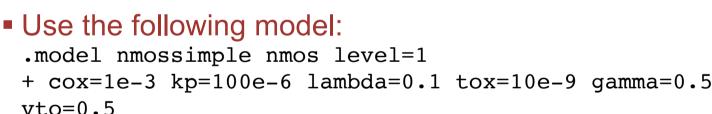
RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Exercise: The MOS Transistor

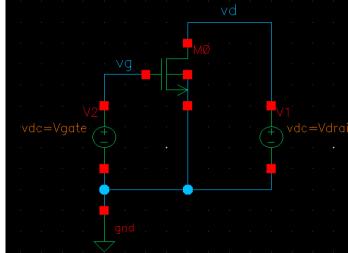
Prof. Dr. P. Fischer

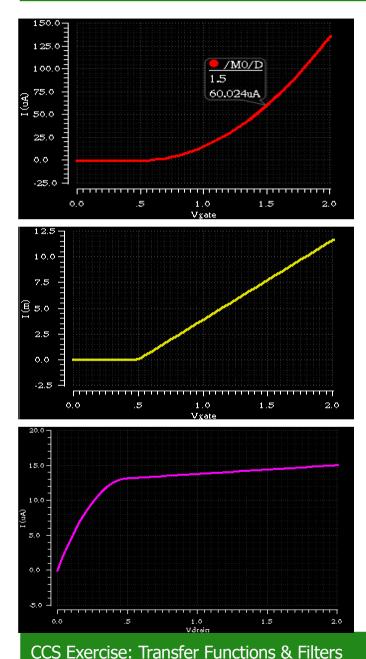

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

CCS Exercise: MOS Transistor

© P. Fischer, ZITI, Uni Heidelberg Page1

Exercise 1: Simple MOS (Level 1 model)


- We want to simulate a MOS with a very simple model (as the formula shown in the lecture)
- Create a schematic which allows you to set V_G and V_D of a MOS:
- Use 'nmos4' from 'analogLib'
- Attach the model 'nmossimple' (see diode exercise. Add path!)


Plot

RUPRECHT-KARLS-UNIVERSITÄT

- I_D for V_G =0..2 V with V_D =2V (Transfer characteristic)
- $\sqrt{I_D}$ for V_G=0..2 V with V_D=2V (Sqrt of transfer characteristic)
- I_D for $V_D=0..2$ V with $V_G=1V$ (Output characteristic)

- Transfer (linear y scale)
 - Current at $V_G = 1.5V$ is $I_D = K/2 (V_G - V_T)^2 (1 + \lambda V_D)$ $= 50 \times 1 \times (1 + 0.1 \times 2) \mu A$ $= 50 \times 1.2 \mu A = 60 \mu A$
- Sqrt(..) plot shows exact quadratic behaviour ('level 1 model')

- Output Char. shows Early effect
 - Current at kink is $I_D = K/2 (V_G - V_T)^2 (1 + \lambda V_D)$ = 50 × 0.5² × (1+0.1×0.5) µA = 12.5 × (1.05) µA

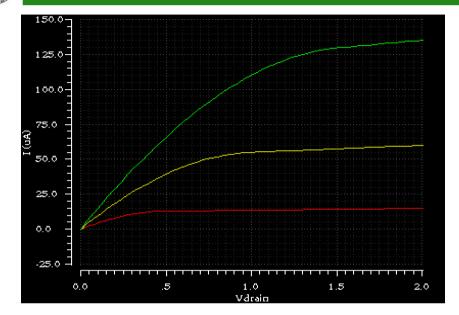
- Sweep I_D for $V_D=0..2$ V with $V_G=1V$, 1.5V, 2V
- What are the slopes at high drain voltages ?
- Do they correspond to what you expect ?

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

20.0

16.0

12.0


8.0

4.0

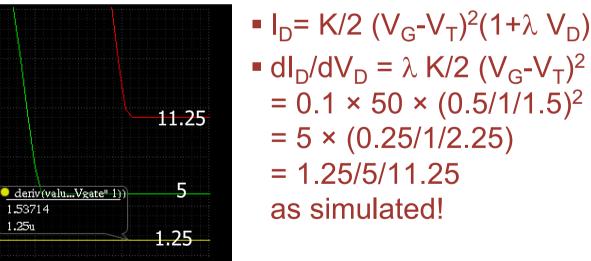
0.0

0.0

3

1.53714 1.25u

1.0


Vdrain

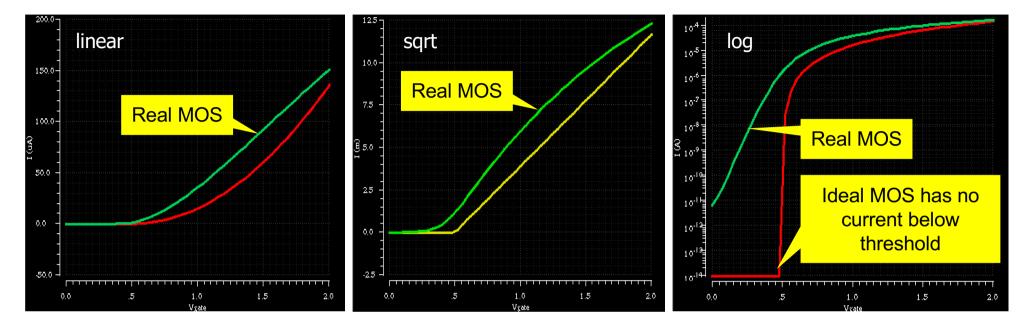
1.5

2.0

Current increases

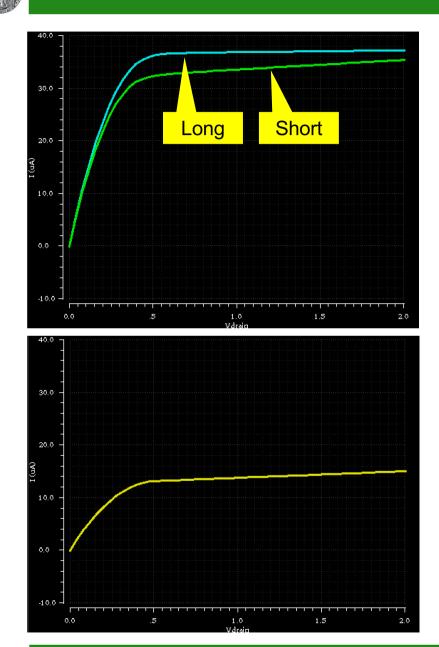
CCS Exercise: Transfer Functions & Filters

.5


RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Exercise 3: A real MOS

- Now use the model 'nmos' provided in the file MOSLib.lib in moodle (this MOS should be operated below 2V)
- Compare the transfer curves of a 'nmossimple' and 'nmos'
 - Are they both exactly quadratic?
 - What happens at low gate voltages (below threshold)? Do a logarithmic plot!


- Real MOS is not quadratic
 - Velocity saturation at high Gate voltages
 - Current >0 in weak inversion (below threshold)

Exercise 4: Sizing the MOS

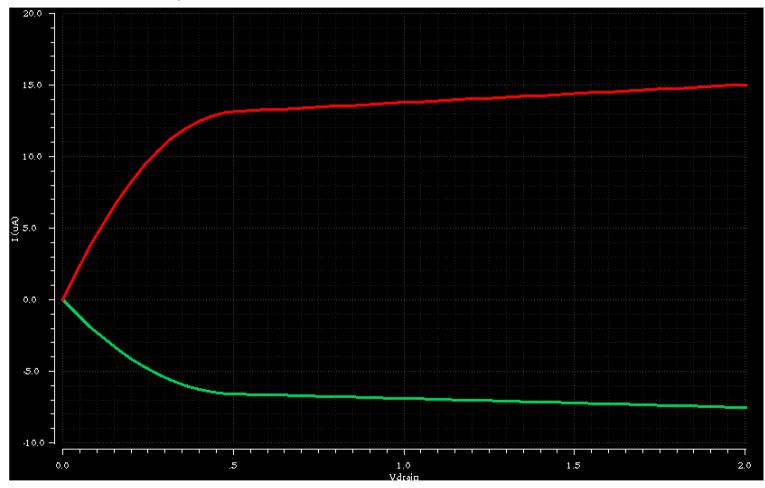
- Set the properties W and L of both types of MOS to WL
- Compare the output characteristics for WL=1u and WL=10u for both MOS
 - Is there a change in output resistance if you change the geometry?

ruprecht-karls-UNIVERSITÄT HEIDELBERG

 For the real MOS, the output resistance increases, when L is increased

 For the 'nmossimple', there is NO difference (both curves are the same).
This model is clearly too simplistic!

CCS Exercise: Transfer Functions & Filters

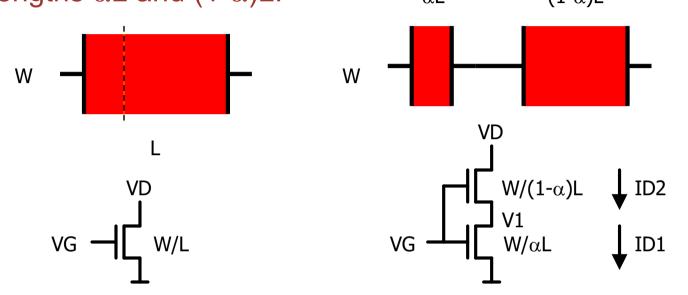

Exercise 5: PMOS

- Simulate transfer and output characteristic for a PMOS
 - Note that the source of the transistor is now ,on top'
 - Gate and drain must be negative with respect to source
- Simulate in parallel a NMOS of the same size.
 - Plot the drain current of NMOS and PMOS simultaneously.
 - How big is the difference?
 - Does that fit the model?

Here for simple models:

Ratio is exactly 3, the ratio of the kp parameters

CCS Exercise: Transfer Functions & Filters


© P. Fischer, ZITI, Uni Heidelberg Page 11

Exercise 6: Formulae match...

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

• A MOS with width W and length L is cut in two devices with lengths αL and $(1-\alpha)L$: αL $(1-\alpha)L$

- The series connection must behave as the single device!
- Assume a large VD. In which regimes do the 2 MOS operate (lin. / sat.?). Write down the formulae for ID1 and ID2
- The currents must be equal. Find α. Then find ID1 (=ID2)
- Is this the current of the single MOS?
- How large is V1 for α =5/9 ?

ruprecht-karls-UNIVERSITÄT HEIDELBERG

Solution 6:

In[63]:= ILin[Vgs_, Vds_] = (Vgs - Vt) Vds - $\frac{1}{2}$ Vds²; ISat[$Vgs_$, $Vds_$] = $\frac{1}{2}$ (Vgs - Vt)²; $\ln[91] = EQ1 = \frac{W}{\alpha L} ILin[VG, V1] = \frac{W}{(1 - \alpha) L} ISat[VG - V1, VD - V1] // Simplify$ Out[91]= $\frac{W(V1^2 - 2V1(VG - Vt) + (VG - Vt)^2\alpha)}{L(-1 + \alpha)\alpha} = 0$ $\ln[67] = \alpha \text{ sol} = \alpha / . \text{ First@Solve}[EQ1, \alpha] (* \text{ find } \alpha *)$ Out[67]= $\frac{-V1^2 + 2 V1 VG - 2 V1 Vt}{(VG - Vt)^2}$ $\ln[69] = I2 = \frac{W}{\alpha I}$ ILin[VG, V1] /. $\alpha \rightarrow \alpha$ sol // Simplify (* Find current *) $Out[69] = \frac{(VG - Vt)^2 W}{2 I}$ ln[71]:= I2 == $\frac{W}{L}$ ISat[VG, VD] // Simplify (* Compare to single MOS *) Out[71]= True In[72]:= \$Assumptions = VG > Vt; In[73]:= V1sol = V1 /. First@Solve[EQ1, V1] // Simplify Out[73]= - (VG - Vt) $(-1 + \sqrt{1 - \alpha})$ $\ln[74]:=$ V1sol /. $\alpha \rightarrow 5/9$ $Out[74] = \frac{VG - Vt}{3}$

CCS Exercise: Transfer Functions & Filters

© P. Fischer, ZITI, Uni Heidelberg Page 13

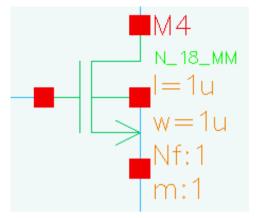
Exercise 5: Drain Capacitance

- Charge the drain capacitance of the 'real' MOS to determine its C(V) curve
 - Set V_G to 0 to turn the drain current off
 - Add a small cap in parallel to define the start voltage 0 V

1: Transfer Characteristic & Transconductance

- For an NMOS of W=L=1µm with V_{BS} = 0, keep the drain at 1.8 V and sweep the gate voltage from 0 to 1.8 V. This is the *transfer characteristic* of the MOS.
 - Observe the drain current

RUPRECHT-KARLS-UNIVERSITÄT


- Plot the square root of the current. Do you find a straight line as expected?
- Plot the current in log scale. Can you see the sub-threshold region?
- What is the transconductance at $V_{GS} = 1V$ (make a derivative!)?
- Make a parametric sweep changing W from 0.24µm to 2µm
 - Is the current proportional to W?
- Repeat this for a L-sweep (start with 180nm)
- Plot the transfer curve for two different values of V_{BS}, for instance 0 V and -2 V

Exercise 1: NMOS in Linear Region

- Use an NMOS transistor of type N_18_MM from library UMC_18_CMOS with W=L=1µm
- Connect

RUPRECHT-KARLS-UNIVERSITÄT

- source and bulk to ground
- the gate to 2 V

- Sweep V_{DS} from -0.1V to 0.1 V and observe the current
- Extract the resistivity of the channel
- Double W or L and simulate & extract again.
 - Are the results as expected ? Compare W=L=1µ and W=L=2µ!
- Now sweep the *gate* voltage from 0.6 V to 2 V. Explain!
- Now sweep the *drain* voltage from 0V to 1V. Verify the saturation point for a few gate voltages.
- What happens if you sweep the drain voltage from -1V on?

Exercise 3: Output Characteristic, Saturation

- Now plot the output characteristic, i.e. I_D as a function of V_{DS} for a fixed V_{GS} (for instance V_{GS} = 1.0 V)
 - Can you see the linear region and the saturated region?
- Extract the output resistance for instance for V_{GS} =1.8V and V_{DS} =1.8V (derivative!).
- Plot the output characteristic for V_{GS} =0..1.8V in 0.2V steps
 - Observe how the current changes
 - Observe how the saturation voltage changes
 - Observe how the output resistance changes (Early voltage ?)
- Now use two NMOS with different W (for instance 0.5µm and 2µm).
 - Search for gate voltages so that the currents for a given V_{DS} (for instance for 1.8 V) are similar.
 - Compare the output characteristics & saturation voltages

RUPRECHT-KARLS-UNIVERSITÄT