RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Exercise: Gain Stage

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

1. Basic Gain Stage

- Implement a NMOS gain stage.
 - Use real transistor models ('nmos','pmos')
 - Use a NMOS with W/L = $1\mu/0.5\mu$
 - Use a PMOS of W/L = $1\mu/1\mu$
 - Bias the PMOS with a mirror to 10µA
 - Operate at VDD = 1.8 V
- Sweep V_{in} and observe V_{out}
- What is the largest gain (derivative!) ?
- Why is the 'upper' part of the curves so wide?
- Change
 - the bias current
 - W, L of the input transistor
 - and observe what happens. Explain!
 - Why can't you increase gain more with W,L changes?
- Can you operate at 100µA?

2. Operation point

- Use the trick explained in the lecture to set the operation point
 - Use for instance C=1uF, R=100M Ω
- Make an AC sweep

3. Bandwidth

- Load the gain stage with a capacitor (1 pF)
- Observe the bandwidth
 - best use the 'automatic' operation point
- Modify the load capacitor
 - Is bandwidth inversely proportional to C_L?
- Modify I_D
 - Make a Parametric Sweep with 2-3 values (0.1µA, 1µA, 10µA)
 - Do you find what you expect?

4. PMOS Amplifier

 Design a PMOS gain stage (with a NMOS current mirror load)

- Set up a cascoded gain stage
 - Use W/L = 5μ / 0.4 μ for all 4 MOS
 - Use I_{bias} = 10 uA
 - Use a stacked mirror on the PMOS side (different from demo in lecture!)
 - Use a 'safe' cascode voltage for the NMOS
- Simulate
 - Make a DC sweep. What is the gain ?
 - Try different Cascode voltages
 - Check that $v_{out} = v_{in}$ is a good operation point for AC analysis
- Make an AC sweep with a load of C_{load} = 100fF
 - What is the gain?
 - Simulate a non-cascoded gain stage in parallel an compare

6. The Inverter

- The PMOS 'load' in the gain stage supplies a more or less constant current
- In the CMOS Inverter shown, the PMOS is switched with the input signal, it acts as the NMOS
- Simulate the DC transfer function V_{out}(V_{in})
 - For instance $L_N = L_N = 0.5\mu$, $W_N = 1\mu$, $W_P = 2\mu$
 - What is different from the normal gain stage ?
 - What is the maximum gain ?

Use a small signal analysis to find the gain

