

Source Follower and Differential Pair

The Source Follower (Common Drain Stage, SF)

- Current source I₀ pulls a constant current through the MOS
- This fixes V_{GS} of M1 (to V_T + Sqrt(...))
- Therefore, $V_{in} V_{out} = V_{GS}$ is *nearly* constant (see later)
- The small signal gain is close to 1

$$V_{out} \sim V_{in} - constant \rightarrow v_{out} \sim v_{in} \rightarrow g = v_{out}/v_{in} \sim 1$$

• NMOS Source Follower with NMOS current source:

• Starts to works when Vin > V_{T,NMOS} + V_{DSat,Source}

UNIVERSITÄT Real Source Follower (Here *with* substrate effect) HEIDELBERG In reality, we must consider body effect (if body = ground): $i = V_{BS} g_{mb}$ • r_{ds} of M1 and of current source • body effect (if $V_B \neq V_S$) $(v_{in}-v_{out}) g_m \bigotimes$ $(0-v_{out}) g_{mb}$ V_{in} M1 r_{ds} Vout Vout gmurdsri dun am • gain = $\frac{1}{rds + ri + gm rds ri + gmb rds ri} = \frac{1}{gds + gi + gm + gmb}$

with $g_{ds} = 1 / r_{ds}$, $g_i = 1/r_i$ and $g_{ds} \ll g_m$...

• Gain is always \leq 1. With $g_{mb} = (n-1) g_m$, gain ~ 1/n ~ 0.7

am + amp

Source Follower with g=1 ?

• From $g = \frac{gm}{gds + gi + gm + gmb}$ we see that we approach g=1 with

- gmb = 0 \rightarrow connect bulk an source of M1. This is often not possible for NMOS (bulk = substrate = ground)
- gi = 0 \rightarrow Make a good current source:
 - long MOS
 - Cascode, ...

This will lead to higher V_{DSat} so that SF works ,later'

• gds = 0
$$\rightarrow$$
 Hard.

- Longer MOS helps, but gm suffers (ratio does not increase quickly, speed suffers)
- Cascode not possible because we change source!
- Reaching an *exact* gain of 1 is not really possible!
- Obvious: If a SF is loaded by a *resistive* load, gain drops!

Advanced: Source Follower with finite source imp.

Consider the case when the SF is driven by a

For instance a gain stage

- ,high impedance' source (with output resistance R_S):
- Take into account the Gate-Source cap. C_{GS} and output cap. C_{L}
- neglect output impedances and g_{mb} for simplicity...

Simulation

• 180nm Technology, W/L = 1μ/0.18μ, C_L = 100fF, I_{bias} = 10μA

 Therefore remember: Source Followers driving capacitive loads are *dangerous*!

What for?

- The Source Follower has a low output impedance (1/g_m)
- It can 'drive' low-impedance loads
- Gain drops 'only a bit'
 - (gain of a gain stage drops 'a lot' with resistive loads)
- Often used in combination with a gain stage:

Special Application

- SF be used to ,send' a voltage
- Multiple Source Followers can be combined:

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

THE DIFFERENTIAL PAIR

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

- Very often, the *difference* of voltages must be amplified
- The basic circuit are two MOS with connected sources:

- How does it work?
 - Assume $V_+ > V_-$
 - $\bullet \to V_{GS}$ of the left MOS is always larger than V_{GS} of the right MOS
 - $\bullet \ \longrightarrow \ |_+ > \ |_-$

$$V_{+} = V_{-} \rightarrow V_{\text{GS,left}} = V_{\text{GS,right}} \rightarrow I_{+} = I_{-} = I_{0} / 2$$
$$V_{+} \gg V_{-} \rightarrow I_{+} \sim I_{0} , I_{-} \sim 0$$

What is V_S ?

- V_S is (roughly) one threshold voltage below the *higher* input voltage
- It is often called the 'tail' voltage V_{tail}.
- The pair only works for input voltages > V_{TH}

 The tail current is normally provided by a current source which needs additional (saturation) voltage.

The Switching Voltage in Strong Inversion

• We have $ID[VGS_] = \beta (VGS - VTH)^2$; with $\beta = K/2 W/L$

We have 3 equations for 3 unknowns (I_P, I_N, V_S):

IP + IN == I0;

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

-

• We get IP =
$$\frac{1}{2} \left(IO + \sqrt{\beta \Delta V^2 \left(2 IO - \beta \Delta V^2 \right)} \right)$$
 with $\Delta V = V_P - V_N$

• Conclusion: In *strong inversion*, pair can be *fully* switched!

V_n

The Switching Voltage in Weak Inversion

• We have
$$ID[VGS_] = \beta Exp\left[\frac{VGS}{n UT}\right]$$
;

• We get IP =
$$\frac{I0}{1 + e^{\frac{\Delta V}{n UT}}}$$
 with $\Delta V = V_P - V_N$ and UT = 25.6 mV

We switch in a few UT, but *never* switch completely

 Conclusion: In weak inversion, pair switches at small voltages, but never fully!

The Differential Amplifier

• One 'output' current is often mirrored and added to the other:

Output Current of the Differential Amplifier

- If the output voltage is *fixed*, the *output* current is just I₊ I₋
- The circuit is a , *Transconductor* (it converts $\Delta U \rightarrow I$)

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

Output Voltage of the Differential Amplifier

If no current flows out of the circuit and the output voltage is left free, we have voltage gain (the current pulls out hi/low)

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

• VDD = 1.8V

Sweeping V₋

■ V- = 0.2, 0.4,...1.6 V

- What is the (voltage) gain?
- To first order, it is as before the g_m of the *input* transistor(s) multiplied with the total impedance at the *output* (i.e. r_{ds} of the current mirror output in parallel to r_{ds} of the diff. pair)

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Comments

- Understanding the large signal behaviour for very different V_p,V_n is important, but in practical circuits, feedback is often applied so that V_p = V_n.
- Another important property is the common mode input range. This is limited by the V_{GS} of the input pair and the compliance of the tail current source: An NMOS differential pair does not work any more at low (common mode) input voltage.
- Another property is common mode gain, i.e. the change in output voltage if both inputs are changes simultaneously. In an ideal amplifier, common mode gain is 0.
- If the amplifier is loaded with a resistive load, gain drops. (as for the gain stage).
 - Therefore a source follower is sometimes added.
 - Stability in feedback circuits is then more tricky. Compensation methods are needed.

More Gain: Diff-Amp with Gain Stage

- The differential amplifier is often followed by a gain stage
 - This two-stage design has two ,main' poles and may need compensation if used in feedback configuration

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

- The 'steep' part of the transfer function of the first (differential) stage should be coincide with
- the 'steep' part of the second stage!
- This can be achieved (for 3x equal PMOS) with $I_0 = 2 \times I_1$, so that $I_+ = I_- = I_1$ at the switching point.

Differential Pair + Current Mirror

The problem of limited output voltage swing for high input common mode can be solved by mirroring the currents:

Alternative topologies

- Many topologies are possible, using mirrors and cascodes
- For instance this 'folded cascode' configuration

