RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Exercise: Source Follower and Differential Amplifier

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

- Implement an NMOS Source follower
 - Use an NMOS with W/L = 1μ / 0.2μ
 - Connect Bulk to Source
 - Use an NMOS mirror with W/L = 1μ / 0.5 μ as current source
 - Bias the circuit with $10\mu A$
- Perform a DC and a transient analysis
 - What is the gain?
 - What happens for low input voltages? Why?
 - How does the gain change when you connect the bulk of the SF - NMOS to ground?

2. *PMOS* Source Follower

 Now draw a PMOS source follower with the same transistor dimensions & current...

3. Differential pair

Draw a differential NMOS pair

- Set $V_{-} = 1V$ and vary V_{+} from 0 to VDD = 1.8V
 - Observe $I_{\scriptscriptstyle +},\,I_{\scriptscriptstyle -}$ and $V_{\scriptscriptstyle S}.$
 - Explain what you see!

4. Differential Amplifier

Draw a full differential amplifier

- Start with V₋ = 0.5V
- What is the gain?
 - Can you guess an analytical approximation for the gain?
- Check the large signal behavior for different V₋.

5. PMOS Differential Amplifier

- Draw a full differential amplifier with a PMOS input stage
 - You must also change the other MOSs...