

Exercise: Thévenin, Resistors, Capacitors

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

- Derive the expressions for the series and parallel connection of capacitors
- Use charge conservation (at node x)

1. Charge conservation:

$$V \times C_1 + V \times C_2 = Q_1 + Q_2 = Q_{par} = V \times C_{par} \rightarrow C_1 + C_2 = C_{par}$$

2. Kirchhoff & complex impedance:

$$V sC_1 + V sC_2 = i_1 + i_2 = i_{par} = V sC_{par} \rightarrow C_1 + C_2 = C_{par}$$

1. Charge conservation:

Note: no charge can 'escape' the middle node, so that $Q_1=Q_2=Q_{ser}$ $V = V_1 + V_2 = Q_1/C_1 + Q_2/C_2 = Q/C_1 + Q/C_2 = Q/C_{ser}$ $\rightarrow 1/C_1 + 1/C_2 = 1/C_{ser}$

2. Kirchhoff & complex impedance:

$$V_1 \, sC_1 = V_2 \, sC_2$$
 and $V_1 + V_2 = V$ \rightarrow $V_1 = V \, C_2 \, / \, (C_1 + C_2)$
 $\rightarrow i_1 = V_1 \, sC_1 = V \, s \, C_1 C_2 \, / \, (C_1 + C_2)$
 $\rightarrow C_{ser} = i \, / \, (Vs) = i_1 \, / \, (Vs) = C_1 C_2 \, / \, (C_1 + C_2)$

Derive the Thévenin Equivalent for the following circuit:

- Try two different methods:
 - Use the Open/Short method with Kirchhoff's rules
 - Convert the I-source part to a voltage source first...

Solution 2 – Kirchhoff

1. Short circuit current:

- EQ1: $1 A + v_1 / 5\Omega + v_2 / 2\Omega = 0$
- EQ2: $v_2 = v_1 + 3V$

- $\rightarrow V_2 = -4/7 V$
- \rightarrow $I_{\text{short}} = -2/7 \text{ A}$

1. Open circuit voltage:

- EQ1: $1 A + v_1 / 5\Omega = 0$
- EQ2: $v_2 = v_1 + 3V$

•
$$\rightarrow$$
 V_1 = -5 V

•
$$\rightarrow V_2 = V_{open} = -2 V$$

• Source: $V_0 = V_{open} = -2 \text{ V}$, $R_V = V_0 / I_{short} = 7 \Omega$

Solution 2 – Thévenin Transformations

1. Convert the current source to a voltage source:

2. Use this in the circuit:

What is the Thévenin Equivalent of the following circuit?

- Use two methods to find the result:
 - parallel / series connection of resistors and your knowledge about the voltage divider
 - short/open method

■ Parallel-Series Connection, Voltage Divider:

■ Open: Vopen = 1V

Short:

Rtotal =
$$2\Omega + 2/3\Omega = 8/3 \Omega$$

Itotal =
$$2V / Rtotal = 3/4 A$$

Ishort =
$$2/3$$
 Itotal = $1/2$ A

Zin = Vopen / Ishort
=
$$1V / \frac{1}{2} A$$

= 2Ω

What is the 'gain' (attenuation) of the following voltage divider (all resistors have 1 Ohm):

- Try 3 different methods:
 - Your knowledge of parallel / serial connection of resistors
 - Kirchhoff's law
 - Use your knowledge about the Thévenin equivalent of a voltage divider

- 1. 'By hand':
 - The lower part is a *parallel* connection of 1Ω and 2Ω . This gives $(1/1\Omega + 1/2\Omega)^{-1} = 2/3 \Omega$.
 - So we have at node v_1 a voltage divider with 1Ω and $2/3\Omega$. The voltage at v_1 is (2/3) / (1+2/3) $v_{in} = 2/5$ v_{in}
 - The voltage at v_{out} is half of v_1 , so $v_{out} = 1/5 v_{in}$

2. Kirchhoff

We have current equations at nodes v₁ and v_{out}:

$$EQv1 = \frac{vin - v1}{1} = \frac{v1}{1} + \frac{v1 - vout}{1};$$

$$EQvout = \frac{v1 - vout}{1} = \frac{vout}{1};$$

Eliminate[EQv1 && EQvout, v1]

First@Solve[%, vout]

$$\left\{ \text{vout} \rightarrow \frac{\text{vin}}{5} \right\}$$

3. Thévenin:

- The first divider (left of the dotted red line) can be replaced by its Thévenin equivalent of a voltage source with $v_{in}/2$ and an outputs resistance of $\frac{1}{2}\Omega$.
- This creates a divider of 1/2.5 of a voltage $v_{in}/2$, so that we get $v_{in}/5$.

■ A voltage source with voltage V₀ and output resistance R₀ is loaded by a resistor R_L:

- What is the output voltage V_{out}?
- Which current flows in R_L?
- What power (P = U I) is dissipated in R_L?
 - Check that noting is dissipated for $R_L=0$ and $R_L\to\infty$
- For which value of R_I is the dissipation maximized?
 - What is the dissipation?

■ We consider charging of a capacitor C though a resistor R to a voltage U₀.

- \bullet Show that $\,U(t)=U_0-U_0\,e^{-\frac{t}{RC}}\,\,$ satisfies the differential equation
- Simplify U(t) for small times t<<RC.</p>
- What is the initial slope?
- Derive this slope directly (assuming U(0) = 0).

■ For a capacitor, we have dU/dt = I/C. And we have $I = (U_0-U)/R$ So the DGL is $U'(t) = (U_0-U)/RC$

■ The proposed solution $U(t) = U_0 - U_0 Exp(-t/RC)$ gives The left hand side: $U'(t) = U_0/RC Exp(-t/RC)$ And the right side: $U_0 Exp(-t/RC) / RC$, i.e. the same.

- For small x, the Exp(x) is ~ 1+x, therefore $U(t) \sim U_0 U_0$ (1-t/RC) = t U_0 /RC
- The slope is derivative of this, i.e U₀/RC
- This is a charging I/C with an initial current U₀/R

Exercise 7 (new): R-2R DAC

- Digital-Analog-Converters (DACs) convert a digital (normally binary coded) value into a voltage (or current) which is a normally proportional to the digital value.
- A simple circuit is the R-2R DAC:

- The input voltages at the lower side of the 2R resistors is either 0V or some V_{REF} , depending of the binary bit (Q_0 is the Least Significant Bit, LSB).
- Show that the output voltage of a R-2R DAC with an arbitrary number N of bits is proportional to Q!
 - Hint: Replace the circuit by Thévenin equivalents at the red lines from left to right.

Assume the left (driving) side of a 'red line' is given by V_{th,in}

- The output resistance is $R_{th,out} = (R_{th,in} + R) \parallel 2R$. For $R_{th,in} = R$, we get again $R_{th,out} = 2R \parallel 2R = R!$ Therefore $R_{th} = R$ in all stages.
- Therefore, $R_{th,in}$ and the serial R add up to 2R and we always have a 1:1 divider!: $V_{th,out}$ is the average of $V_{th,in}$ and Q V_{REF}
- With $V_{th,in}$ of the 0-th stage being 0, we get $V_0 = \text{Average}(0, \, Q_0 \, V_{\text{REF}}) = Q_0 \, / \, 2 \times V_{\text{REF}}$ $V_1 = \text{Average}(Q_0 \, / \, 2 \times V_{\text{REF}} \, / \, 2, \, Q_1 \, V_{\text{REF}}) = (Q_1 \, / \, 2 + Q_0 \, / \, 4) \, V_{\text{REF}}$ $V_2 = \ldots = (Q_2 \, / \, 2 + Q_1 \, / \, 4 + Q_0 \, / \, 8) \, V_{\text{REF}}$ and so on. This is the desired linear relationship.