Exercise: Thévenin, Resistors, Capacitors

Prof. Dr. P. Fischer
Lehrstuhl für Schaltungstechnik und Simulation
Uni Heidelberg

Exercise 1

- Derive the expressions for the series and parallel connection of capacitors
- Use charge conservation (at node x)

Solution 1

1. Charge conservation:

$$
\mathrm{V} \times \mathrm{C}_{1}+\mathrm{V} \times \mathrm{C}_{2}=\mathrm{Q}_{1}+\mathrm{Q}_{2}=\mathrm{Q}_{\mathrm{par}}=\mathrm{V} \times \mathrm{C}_{\mathrm{par}} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}=\mathrm{C}_{\mathrm{par}}
$$

2. Kirchhoff \& complex impedance:

$$
\mathrm{VsC}_{1}+\mathrm{VsC}_{2}=\mathrm{i}_{1}+\mathrm{i}_{2}=\mathrm{i}_{\mathrm{par}}=\mathrm{VsC}_{\mathrm{par}} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}=\mathrm{C}_{\mathrm{par}}
$$

Solution 1

1. Charge conservation:

Note: no charge can 'escape' the middle node, so that $Q_{1}=Q_{2}=Q_{\text {ser }}$

$$
\begin{aligned}
& \mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}=\mathrm{Q}_{1} / C_{1}+\mathrm{Q}_{2} / \mathrm{C}_{2}=\mathrm{Q} / \mathrm{C}_{1}+\mathrm{Q} / \mathrm{C}_{2}=\mathrm{Q} / \mathrm{C}_{\mathrm{ser}} \\
& \rightarrow 1 / \mathrm{C}_{1}+1 / \mathrm{C}_{2}=1 / \mathrm{C}_{\mathrm{ser}}
\end{aligned}
$$

2. Kirchhoff \& complex impedance:

$$
\begin{aligned}
& \mathrm{V}_{1} \mathrm{sC}_{1}=\mathrm{V}_{2} \mathrm{sC}_{2} \text { and } \mathrm{V}_{1}+\mathrm{V}_{2}=\mathrm{V} \quad \rightarrow \quad \mathrm{~V}_{1}=\mathrm{VC}_{2} /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \\
& \rightarrow \quad \mathrm{i}_{1}=\mathrm{V}_{1} \mathrm{sC}_{1}=\mathrm{VsC} \mathrm{C}_{1} \mathrm{C}_{2} /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \\
& \rightarrow \quad \mathrm{C}_{\text {ser }}=\mathrm{i} /(\mathrm{Vs})=\mathrm{i}_{1} /(\mathrm{Vs})=\mathrm{C}_{1} \mathrm{C}_{2} /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)
\end{aligned}
$$

Exercise 2

- Derive the Thévenin Equivalent for the following circuit:

- Try two different methods:
- Use the Open/Short method with Kirchhoff's rules
- Convert the I-source part to a voltage source first...

Solution 2 - Kirchhoff

1. Short circuit current:

- EQ1: $1 \mathrm{~A}+\mathrm{v}_{1} / 5 \Omega+\mathrm{v}_{2} / 2 \Omega=0$
- EQ2: $\mathrm{v}_{2}=\mathrm{v}_{1}+3 \mathrm{~V}$

- $\rightarrow \mathrm{V}_{2}=-4 / 7 \mathrm{~V}$
- $\rightarrow I_{\text {short }}=-2 / 7 \mathrm{~A}$

- EQ1: $1 A+v_{1} / 5 \Omega=0$
- EQ2: $\mathrm{v}_{2}=\mathrm{v}_{1}+3 \mathrm{~V}$

$$
\text { - } \rightarrow \mathrm{v}_{1}=-5 \mathrm{~V}, ~=\mathrm{v}_{2}=\mathrm{V}_{\text {open }}=-2 \mathrm{~V}
$$

- Source: $\mathrm{V}_{0}=\mathrm{V}_{\text {open }}=-2 \mathrm{~V}, \mathrm{R}_{\mathrm{V}}=\mathrm{V}_{0} / \mathrm{I}_{\text {short }}=7 \Omega$

Solution 2 - Thévenin Transformations

1. Convert the current source to a voltage source:

2. Use this in the circuit:

Exercise 3

- What is the Thévenin Equivalent of the following circuit?

- Use two methods to find the result:
- parallel / series connection of resistors and your knowledge about the voltage divider
- short/open method
- Parallel-Series Connection, Voltage Divider:

- Open: Vopen = 1V

Short:

$$
\begin{aligned}
& \text { Rtotal }=2 \Omega+2 / 3 \Omega=8 / 3 \Omega \\
& \text { Itotal }=2 \mathrm{~V} / \text { Rtotal }=3 / 4 \mathrm{~A} \\
& \text { Ishort }=2 / 3 \text { Itotal }=1 / 2 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
\text { Zin } & =\text { Vopen } / \text { Ishort } \\
& =1 \mathrm{~V} / 1 / 2 \mathrm{~A} \\
& =2 \Omega
\end{aligned}
$$

Exercise 4

- What is the 'gain' (attenuation) of the following voltage divider (all resistors have 1 Ohm):

- Try 3 different methods:
- Your knowledge of parallel / serial connection of resistors
- Kirchhoff's law
- Use your knowledge about the Thévenin equivalent of a voltage divider

Solution 4

1. 'By hand':

- The lower part is a parallel connection of 1Ω and 2Ω. This gives $(1 / 1 \Omega+1 / 2 \Omega)^{-1}=2 / 3 \Omega$.
- \quad So we have at node v_{1} a voltage divider with 1Ω and $2 / 3 \Omega$. The voltage at v_{1} is $(2 / 3) /(1+2 / 3) v_{\text {in }}=2 / 5 v_{\text {in }}$
- The voltage at $v_{\text {out }}$ is half of v_{1}, so $v_{\text {out }}=1 / 5 v_{\text {in }}$

2. Kirchhoff

- We have current equations at nodes v_{1} and $\mathrm{v}_{\text {out }}$:

$$
\begin{aligned}
& E Q v 1=\frac{v i n-v 1}{1}=\frac{v 1}{1}+\frac{v 1-\text { vout }}{1} ; \\
& E Q v o u t=\frac{v 1-\text { vout }}{1}=\frac{\text { vout }}{1} ;
\end{aligned}
$$

Eliminate[EQv1 \&\& EQvout, v1]
5 vout $=$ vin

First@Solve[\%, vout]
$\left\{\right.$ vout $\left.\rightarrow \frac{\text { vin }}{5}\right\}$

Solution 4

3. Thévenin:

- The first divider (left of the dotted red line) can be replaced by its Thévenin equivalent of a voltage source with $\mathrm{v}_{\text {in }} / 2$ and an outputs resistance of $1 / 2 \Omega$.
- This creates a divider of $1 / 2.5$ of a voltage $v_{\text {in }} / 2$, so that we get $v_{\text {in }} / 5$.

Exercise 5

- A voltage source with voltage V_{0} and output resistance R_{0} is loaded by a resistor R_{L} :

- What is the output voltage $\mathrm{V}_{\text {out }}$?
- Which current flows in R_{L} ?
- What power $(\mathrm{P}=\mathrm{U} \mathrm{I})$ is dissipated in R_{L} ?
- Check that noting is dissipated for $R_{L}=0$ and $R_{L} \rightarrow \infty$
- For which value of R_{L} is the dissipation maximized?
- What is the dissipation?

Solution 5

```
ln[29]:= Vout = V0}\frac{RL}{R0+RL}
In[[0]:= Iout = 保
Out[30]=}=\frac{V0}{R0+RL
In[31]:= Pout = Vout Iout
Out[31]=}\frac{RL V\mp@subsup{0}{}{2}}{(R0+RL\mp@subsup{)}{}{2}
    In[38]:= Table[Limit[Pout, RL }->x],{x,{0,\infty}}
Out[38]={0, 0}
    In[39]:= Solve[D[Pout, RL] == 0, RL] // First
Out[39]= {RL }->\mathrm{ R0 }
\prime In[40]:= Pout /. %
Out[40]=}\frac{V\mp@subsup{0}{}{2}}{4R0
```


Exercise 6

- We consider charging of a capacitor C though a resistor R to a voltage U_{0}.

- Show that $U(t)=U_{0}-U_{0} e^{-\frac{t}{R C}} \quad$ satisfies the differential equation
- Simplify U(t) for small times $\mathrm{t} \ll \mathrm{RC}$.
- What is the initial slope?
- Derive this slope directly (assuming $U(0)=0)$.

Solution 6

- For a capacitor, we have dU/dt = I/C.

And we have I $=\left(\mathrm{U}_{0}-\mathrm{U}\right) / \mathrm{R}$
So the DGL is $U^{\prime}(t)=\left(U_{0}-U\right) / R C$

- The proposed solution $\mathrm{U}(\mathrm{t})=\mathrm{U}_{0}-\mathrm{U}_{0} \operatorname{Exp}(-\mathrm{t} / \mathrm{RC})$ gives The left hand side: $\quad U^{\prime}(t)=U_{0} / R C \operatorname{Exp}(-t / R C)$ And the right side: $\quad U_{0} \operatorname{Exp}(-t / R C) / R C$, i.e. the same.
- For small x, the $\operatorname{Exp}(x)$ is $\sim 1+x$, therefore $\mathrm{U}(\mathrm{t}) \sim \mathrm{U}_{0}-\mathrm{U}_{0}(1-\mathrm{t} / \mathrm{RC})=\mathrm{t} \mathrm{U}_{0} / R \mathrm{C}$
- The slope is derivative of this, i.e $U_{0} / R C$
- This is a charging I/C with an initial current U_{0} / R

Exercise 7 (new): R-2R DAC

- Digital-Analog-Converters (DACs) convert a digital (normally binary coded) value into a voltage (or current) which is a normally proportional to the digital value.
- A simple circuit is the R-2R DAC:

- The input voltages at the lower side of the 2 R resistors is either 0 V or some $\mathrm{V}_{\mathrm{REF}}$, depending of the binary bit (Q_{0} is the Least Significant Bit, LSB).
- Show that the output voltage of a R-2R DAC with an arbitrary number N of bits is proportional to Q !
- Hint: Replace the circuit by Thévenin equivalents at the red lines from left to right.

Solution 7

- Assume the left (driving) side of a 'red line' is given by $\mathrm{V}_{\text {th,in }}$ and $\mathrm{R}_{\mathrm{th}, \mathrm{in}}$:

- The output resistance is $R_{\text {th,out }}=\left(R_{\text {th, in }}+R\right) \| 2 R$. For $R_{t h, i n}=R$, we get again $R_{t h, o u t}=2 R \| 2 R=R$! Therefore $R_{t h}=R$ in all stages.
- Therefore, $\mathrm{R}_{\mathrm{th}, \mathrm{in}}$ and the serial R add up to 2 R and we always have a 1:1 divider!: $\mathrm{V}_{\mathrm{th}, \text { out }}$ is the average of $\mathrm{V}_{\mathrm{th}, \text { in }}$ and $Q \mathrm{~V}_{R E F}$
- With $\mathrm{V}_{\mathrm{th}, \text { in }}$ of the 0 -th stage being 0 , we get
$\mathrm{V}_{0}=\operatorname{Average}\left(0, \mathrm{Q}_{0} \mathrm{~V}_{\mathrm{REF}}\right)=\mathrm{Q}_{0} / 2 \times \mathrm{V}_{\mathrm{REF}}$
$\mathrm{V}_{1}=\operatorname{Average}\left(\mathrm{Q}_{0} / 2 \times \mathrm{V}_{\mathrm{REF}} / 2, \mathrm{Q}_{1} \mathrm{~V}_{\mathrm{REF}}\right)=\left(\mathrm{Q}_{1} / 2+\mathrm{Q}_{0} / 4\right) \mathrm{V}_{\mathrm{REF}}$
$V_{2}=\ldots=\left(Q_{2} / 2+Q_{1} / 4+Q_{0} / 8\right) V_{R E F}$
and so on. This is the desired linear relationship.

