

Exercise: Transfer Functions, Filters

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

Recommendations

- I strongly recommend to use a mathematical program (Mathematica, Maple, SageMath,..) to solve the exercises
- For transfer functions, inspect each result:
 - What happens for $\omega \to 0, \infty$?
 - What happens if component values go to 0 or ∞?

Exercise 1

Derive the Transfer Function of this circuit:

- Use 3 different approaches:
 - Treat the circuit directly (using Kirchhoff's rule)
 - Consider it as a voltage divider of two Impedances. Use R_1 for Z_1 and the parallel connection of R_2 and C_2 for Z_2
 - Replace the (resistive) voltage divider (R₁,R₂) by its Thévenin equivalent and then add the capacitor
- Make a Bode Plot
 - Observe the difference to the normal Low Pass Filter

Exercise 2

 Analyze the following circuit (simulation & calculation!):

- What is the transfer function?
- At which frequencies are the 'pole' in the denominator and the 'zero' in the nominator?
- What are gain and phase for $s \rightarrow 0$ and for $s \rightarrow \infty$? Why?
- What happens for $C_1 \to 0$, for $R \to 0$, for $R \to \infty$? Reasonable?
- Simulate the circuit for $C_1 = C_2 = 10 pF$ and $R = 10 k\Omega$. Plot gain and phase!
- Chose values so that the circuit attenuates to 1/10 at high frequencies.
- For fun: At which frequency is phase shift maximal?

Exercise 3: Cascaded Stages

Consider the following two stage circuit (again):

- The triangle is a (voltage) buffer with infinite input impedance (it does not load the first low-pass) and zero output impedance.
 For simulation use a vcvs (voltage controlled voltage source) from analogLib with gain 1
- What transfer function do you expect?
- Simulate the circuit!
- Simulate a version without buffer in the same schematic
- Where are differences?
- Use a much larger R and correspondingly smaller C in the second low pass.
- Now calculate the exact transfer function without buffer

Exercise 4: Notch Filter

- Consider the following circuit made of cascaded High- and Low Pass stages:
 - The resistors at the output just add the signals at (a) and (b)

- What is the output signal at the corner frequency?
 - Explain this by comparing amplitudes and phases at (a) and (b)

Exercise 5: Wien Bridge / Oscillator

- Consider this circuit:
- What is the transfer function?
- What is the magnitude at the center frequency?
- What is the Phase at the center frequency?
- Simulate the circuit for R=1k C=1n

- You can use this 'Wien Bridge' to make an oscillator:
 - Amplify v_{out} by exactly 3 (vcvs!) and feed the signal back to v_{in}.
 - Set an initial condition of 1V (parameter!) for the lower C and start a transient simulation.
 - How does this work?
 - What happens if the gain is not exactly 3?

Initial condition

Temperature coefficient 1

Exercise 6: Gyrator (difficult)

- A 'Gyrator' can mimic inductive behaviour, while using only resistors, capacitors and amplifiers
- Consider the following circuit:

- **Calculate** the input impedance $Z_{in} = U_{in}/I_{in}$ of the circuit
 - (Use Kirchhoff's law at the input node and node a)
- For frequencies < 1/C R_L, the denominator can be neglected.
- Compare the result to an inductor in series with R_L
- Simulate.
 - Note that R should be larger than R_L (what happens for R=R_L?)
 - Plot i_{in}.
 - Add another capacitor in series to produce a resonant circuit.