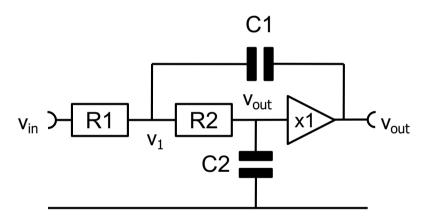
RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG


Exercise: Making a Steep Filter

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

- Just for fun, we want to design a steep Butterworth Low Pass filter
 - Let the corner frequency be 1 MHz
 - Let's chose order N=6
 - Implement it using 'Sallen and Key' stages with k=1

 After you have derived component parameters for the 3 filter stages, simulate the result.

- The poles of a Butterworth filter are placed on the left half circle with equal angles (see slide 'choosing the poles' in the lecture), i.e. with dφ = π/N and r = ω.
- Each complex-conjugate pair of poles is handled by one 2nd order 'Sallen and Key' filter. So we need N/2 stages.
- Each filter (with dc gain 1) has a general transfer function of 1/(1+s/p_a)(1+s/p_b) = 1/(1+as+bs²) where p_a and p_b are the two complex conjugate poles.

- Step1:
 - Given a pole pair, we want to know the transfer function
 - Write $p_a = r (Sin(\phi)+i Cos(\phi)), p_b = ...$
 - From p_a and p_b, calculate a, b
- Step2:
 - Our filter has 4 parameters (R1,R2,C1,C2), but its behaviour is described by 2 (e.g. corner, peaking), there are several ways to implement it. For example:
 - Set R1=R2=R and C2 = 1nF. This leaves us with 2 parameters
 - Derive the transfer function of a filter stage
- Step3:
 - For a given (r, φ) and thus (a,b), derive R and C1 by equating the coefficients of s and s².
- Step 4:
 - Derive (r, φ) for each pole-pair of the Butterworth and get R and C1 for that filter stage.