

Exercise: Source Follower and Differential Amplifier

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

1. NMOS Source Follower

- Implement an NMOS Source follower
 - Use an NMOS with W/L = 1μ / 0.2μ
 - Connect Bulk to Source
 - Use an NMOS mirror with W/L = 1μ / 0.5μ as current source
 - Bias the circuit with 10μA
- Perform a DC and a transient analysis
 - What is the gain?
 - What happens for low input voltages? Why?
 - How does the gain change when you connect the bulk of the SF - NMOS to ground?

2. PMOS Source Follower

- Now draw a *PMOS* source follower with the same transistor dimensions & current...
- Which input voltages are now problematic?

3. (Optional: SF Instability)

- Repeat the situation from the lecture slides:
 - SF driven by a (large) source impedance
 - Added load capacitance
 - Added capacitance between input and output (an exaggerated C_{GS})
- Observe the overshoot in the transient response for a step input or the increased gain in an AC sweep.

4. Differential pair

Draw a differential NMOS pair

- Set V₋ = 1 V and vary V₊ from 0 to VDD = 2 V
 - Observe I₊, I₋ and the 'tail' voltage V_S.
 - Explain what you see!
- Change the bias current I₀ or the transistor dimensions.
 - Observe how the switching region changes (i.e. which voltage difference is needed to switch fully). Do you understand?

5. Differential Amplifier

Draw a full differential amplifier. Start with all W/L = 1u/0.5u

- Start with V₋ = 0.5V
- What is the gain at the switching point?
 - Use a DC sweep. Also try an AC sweep with appropriate bias.
- Check the large signal behavior for different V₋.

6. PMOS Differential Amplifier

- This exercise is only useful if you have problems to switch from NMOS to PMOS circuits...
- Draw a full differential amplifier with a PMOS input stage
 - You must also change the other MOSs...

7. Mirrored Amplifier

- Implement the mirrored amplifier from page 23 of the lecture slides.
- Sweep V₊ for various constant V-. Observe the output.
 What is the difference to the normal differential amplifier?
- When used as transconductor (driving in a constant output voltage), what output voltages are possible?