

The pn-Diode

A few Natural Constants

q	$1.602 \times 10^{-19} \text{ C}$	elementary charge
■ k	$1.381 \times 10^{-23} \text{ J/K}$	Boltzmann constant
■ ε ₀	$8.854 \times 10^{-12} \text{ F/m}$	vacuum susceptibility (Hint: $C = \varepsilon_0$ A/d, 1m x 1m x 1m: ~10pF)
■ 4kT	$1.657 \times 10^{-20} J$	Noise Power density @ 300K
■ U _T	= kT/q = 25.9 mV	Thermal voltage @ 300K

A few Constants for Silicon

N_iμ_e	n5 x 10 ²² 1.01 x 10 ¹⁰ ~1400 ~480	cm ² /Vs	band gap at 300K atom density intrinsic carrier density at $300K^*$ ('old' value: 1.45) electron mobility (@ low fields) hole mobility ($v = \mu E$) critical field where mobility starts to drop
■ E _{Si}			dielectric constant of silicon dielectric constant of silicon - dioxide
■ E _{max}	$_{c} \sim 3 \times 10^{7}$	V/m	break through field strength
■ E _{eh}	3.6	eV	Av. Energy required to generate an e-h pair
ρλα	7.87 150 2.56	gcm ⁻³ W / (mK) 10 ⁻⁶ K ⁻¹	density thermal conductivity thermal expansion coefficient (compare Al: 23.1)

^{*}Sproul AB, Green MA. Improved value for the silicon intrinsic carrier concentration from 275 to 375 K. Journal of Applied Physics. 1991;70:846-854. Available from: http://link.aip.org/link/?JAP/70/846/1

Silicon

CCS: The pn Diode

Silicon Crystal

Each atom has 4 bindings.

See VRML File Diamond.wrl

Face centered Cubic lattice

The Diode (p-n-junction)

Silicon: Crystal & Doping

Doping with 3-valued ACCEPTORs: Doping with 5-valued DONOR atoms: - electrons jump from atom to atom - electrons can escape easily - this is like a positive moving charge - N-conductor - P-conductor - Remaining donor atoms are positive - Remaining acceptors are **negative** p++: strong p-doping

P-weak p-doping nt : Moderate n-doping Nomenclature: n++: strong n-doping : weak n-doping Si **n**-(Si (Si

The pn-junction (diode)

- Bringing together a p- and n doped region:
 - A depletion zone with no charge carriers is created
 - There is a space charge
 - -> There is an electric field

Origin of the Depletion Layer

- We consider an idealized, 'abrupt' transition between n- and p- region (this is smooth in reality)
- Due to the concentration gradient, electrons diffuse from the $n \rightarrow p$ region (holes from $p \rightarrow n$).
- Electrons and holes compensate and we get depleted regions without mobile carriers
- The fixed, ionized atoms are positively charged in the n-region (negatively in the p-region)
- This leads to an electric field
- The field leads to a drift of electrons/holes backwards.
- The thickness of the depletion region is determined by the equilibrium between driftand diffusion currents
- The field is associated with a electrostatic potential. This 'built in' potential depends only on doping.
- In reality, the depletion zone drops more slowly to zero, but the transition region is small.

Derivation of the Build-In Voltage

- Derivation steps (see extra file on web site for explanations)
 - (p(x)= hole density):

$$j_{Feld}(x) = -j_{Diff}(x)$$

$$q \mu p(x)E(x) = q D \frac{dp(x)}{dx}$$

$$-\frac{q}{kT}dV(x) = \frac{dp(x)}{p(x)}$$

$$-\frac{q}{kT} \int_{V_p}^{V_n} dV(x) = \int_{p_p}^{p_n} \frac{dp(x)}{p(x)}$$

$$-\frac{q}{kT}(V_n - V_p) = \ln\left(\frac{p_n}{p_p}\right)$$

$$V_{bi} := V_n - V_p = \frac{kT}{q} \ln\left(\frac{p_p}{p_n}\right)$$

V_{bi} is often also called 'Diffusion Voltage'

- kT/q is a quantity which occurs often
- It is called the 'Thermal Voltage'
- It is ~26mV at room temperature

$$V_{bi} = \left(\frac{kT}{q}\right) \ln\left(\frac{N_A N_D}{n_i^2}\right)$$
 - It is ~26mV at room temperature
$$\approx \left[\log\left(\frac{N_A}{n_i}\right) + \log\left(\frac{N_D}{n_i}\right)\right] \times 60 \,\mathrm{mV}$$
 For typical doping concentrations, this is a few 100 mV

Applying an External Voltage

- An external voltage superimposes an additional field and thus changes the drift contribution
- The equilibrium thickness is changed
- When a positive voltage is applied to the p-side, the overall field is reduced. Diffusion becomes stronger and ultimately an increasing current flows
 - The width of the depletion regions shrinks, as can be understood from page 13, where the voltage difference matters.

• It turns out that
$$I_D = I_S(e^{U_D/U_{TH}} - 1)$$

- Diode current is exponential in a VERY wide range
- U_D = Diode applied to device (relative to n-Side)
- I_S = Saturation Current = Device property (mainly just size)
- U_{TH} = Thermal Voltage = k T / q = 25.9mV @ RT

Diode Forward Current

- For I_S =0.1pA, U_{th} = 25.9 mV
- No magic '0.6V' forward voltage, depends on 'scale'!

Thickness of Depleted Region (See also extra file)

p-dotiert (NA)

Charge on both sides must be equal:

$$Q_p = -Q_n$$

$$Ax_pqN_A = -Ax_nqN_D$$

$$x_pN_A = -x_nN_D.$$

Field at junction:

$$E_{max} = \frac{q}{\epsilon} x_p N_A < 0.$$

■ Potential = V_{bi}:

 $x_d = \sqrt{\frac{2\epsilon}{q} \frac{N_A + N_D}{N_A N_D}} V_{bi} \sqrt{1 - \frac{V_{ext}}{V_{bi}}}$ Dominated by low doped side! $\sqrt{\frac{2\epsilon}{q} \frac{V_{bi}}{N_D}}$

Note: Depletion is thick for LOW doping

n-dotiert (ND)

Raumladungsdichte

Dependence on External Voltage

 For the considered abrupt junction (p changes to n with no transition), we have

$$x_d = \sqrt{\frac{2\epsilon}{q} \frac{N_A + N_D}{N_A N_D} V_{bi}} \sqrt{1 - \frac{V_{ext}}{V_{bi}}}$$

i.e. the thickness of the depletion region increases as the square root of the external voltage (for voltages »Vbi)

■ Typical values on chips: x_d << 1 µm</p>

Capacitance

■ The depletion region is a parallel plate capacitor

$$C_j = \epsilon_0 \cdot \epsilon_{Si} \cdot \frac{A}{x_d} -$$

Capacitance of parallel plate cap. of area A and thickness x_d , filled with (depleted) silicon

$$\frac{C_j}{A} = \sqrt{\frac{q\epsilon_0\epsilon_{Si}}{2} \frac{N_A N_D}{N_A + N_D} \frac{1}{V_{bi}}} \left(1 - \frac{V_{ext}}{V_{bi}}\right)^{-1/2}$$

$$= C_{j0} \cdot \left(1 - \frac{V_{ext}}{V_{bi}}\right)^{-1/2}$$

Exponent depends on doping profile:

- -0.5 for abrupt junction
- -0.33 for linear junction

Applied Voltage [V]

Diode Summary

- Diode is conducting when p-region is at positive voltage
- Forward current $I_D = I_S(\exp(V_D/U_T) 1)$ increases x 10 every $60 \text{mV} (U_T = kT/q \sim 26 \text{mV} @ 300 \text{K})$
- E-Field is largest at the junction
- Potential increases quadratically (in constant doping)
- Depletion region grows towards low doped side.
- Growth with $\sqrt{\text{ of applied voltage}}$ $\sqrt{\frac{2\epsilon}{q} \frac{V_{bi}}{N_D}}$
- Capacitance decreases with $1/\sqrt{1}$ of applied (reverse) voltage

DIODE MODEL

A pn-Diode on a Chip Wafer

- For instance: n-doped Si 'Wafer' is p-doped at the surface
- EACH pn junction forms a diode

Aluminium contacts

Cross section of an pn-junction on a wafer

Modell of the Diode

Capacitance

Is calculated by:

$$C(U) = A \cdot C_{j0} \cdot \left(1 - \frac{U}{V_{bi}}\right)^{-1/2} = A \cdot \mathbf{CJ0} \cdot \left(1 - \frac{U}{\mathbf{VJ}}\right)^{-\mathbf{M}}$$

3 Parameters:

• CJ0 : capacitance per unit area at U=0V

• **VJ** : diffusion voltage = built-in-voltage

• m : 'grading coefficient'

- In more refined models, capacitance is the sum of
 - an AREA component (the bottom of the implant)
 - a SIDEWALL component (perimeter of the implant)

Both contributions are added

$$C(U) = Area \cdot \mathbf{CJ0} \cdot \left(1 - \frac{U}{\mathbf{VJ}}\right)^{-\mathbf{M}} + Perimeter \cdot \mathbf{CJSW} \cdot \left(1 - \frac{U}{\mathbf{VJSW}}\right)^{-\mathbf{MSW}}$$

Important SPICE Parameters of the Diode

Parameter	Symbol	SPICE Name	Einheit	Default
Sättigungsstrom (Saturation current)	I _s	IS	A	1e-14
Serienwiderstand (Series resistance)	R _s	RS	Ohm	0
Sperrschichtkapazität bei VD=0V (Zero bias junction cap.)	C _{j0}	CJ0	F	0
Exponent in Kapazitätsformel (Grading Coefficient)	m	М	1	0.5
Diffusionsspannnung (Junction Potential)	Φ ₀	VJ	V	1
Emissionskoeffizient (Emission Coefficient)	n	N	-	1
Transitzeit (Transit time)	ττ	π	S	0

- The values are for a unit size device. They are later multiplied by the diode AREA
- More refined also CJSW, VJSW, MS
- (Transit time tells how long it takes for carriers to pass the depletion region.)

Simple Small Signal Model

Determine the slope at the working point:

$$I\approx I_{_S}\cdot e^{_{U/U_{Th}}}$$

$$\frac{\partial I}{\partial U} \approx \frac{1}{U_{\text{Th}}} \cdot I_{\text{S}} \cdot e^{U/U_{\text{Th}}} = \frac{I}{U_{\text{Th}}}$$

$$\Rightarrow R_{eq}(U_{_0}) = \frac{U_{Th}}{I_{_0}}$$

