

The Gain Stage (Common Source Amplifier)

Finally: a voltage amplifier

The Three Basic Configurations:

'Common xxx configuration' means:
 Terminal xxx of the MOS is common to input and output

- common source config.
- 'gain stage'
- inverting voltage gain
- high input impedance
- high output impedance

- common drain config.
- 'source follower'
- voltage gain <~ 1
- high input impedance
- low output impedance

- common *gate* config.
- 'cascode'
- current gain = 1
- *low* input impedance
- high output impedance

DC BEHAVIOR OF THE GAIN STAGE

The Principle

- The current in the MOS is set mainly by the (large signal) $V_{GS} = V_{in}$, but also by $V_D = V_{OUT}$
- We sent a constant current I₀ to the drain from a (for now) ideal current source
- In the operation point, V_{GS} and I₀ must 'correspond'!

■ When V_{in} raises (above the op. point)

• I_D increases. It becomes > I₀

- Current is pulled out of the load
- V_{out} drops

- I_D decreases. It becomes < I₀
- Current is pushed into the load
- V_{out} increases

Inverting amplifier

Large Signal Behavior

- Use real current source now (PMOS mirror)
- Observe the 4 main operation regimes:

Understanding the Curve

- The (blue) output characteristic 'increases' with V_{GS}
- The output voltage settles where $I_D = I_0$

Changing the Bias Current

■ For more bias current ('stronger current source'):

- 'Threshold' is 'later'
 - V_{IN} must be higher until I_D reaches 100μA

Therefore, the DC operation point of V_{in} must be adjusted!

- 'Round region' is wider
 - The PMOS is longer in linear region because its V_{GS} is higher
- Output does not go so low (towards GND)
 - NMOS cannot deliver enough (relative to 100µA) current, it comes into the linear region

The gain

 A small change in V_{in} leads to a large change in V_{out} if the transfer curve is steep.

The gain is the derivative of V_{out}(V_{in})

 NOTE that the gain is different along the curve, i.e. for different V_{in}!!
 It depends on the operation point!

Gain vs. V_{IN}

Can be obtained by taking derivative of transfer curve

Gain at Different bias Currents

- Position of 'maximal gain' depends on bias current
- Max. gain is lower for high current (we will understand why!)

Gain of the Gain Stage: Intuitive Way

- When V_{in} changes by a small amount $\Delta V_{in} = v_{in}$, how much does V_{out} change, i.e. what is v_{out} ?
 - Note difference in Capital and Small letters: V_{in} ≠ v_{in}
 - Capitals: Large signal, small: small signal

- What happens?
 - v_{in} leads to a change i_D of I_D of i_D = g_m v_{in} (Definition of g_m!)
 - With a resistive load R, this gives a voltage change v_{out} = R × i_D
 - This change is opposite in direction to v_{in}
 - Therefore: $v_{out} = -R \times g_m \times v_{in}$

gain
$$v = v_{out}/v_{in} = -R \times g_m$$

Gain of the Gain Stage: Small Signal Calculation

- Consider only the MOS (i.e. use ideal current source for bias)
- Replace MOS by its small signal equivalent:

We assume that **no** current flows to output!

- Calculation
 - current at output node = 0 (Kirchhoff)
 - therefore: $0 = g_m \times v_{in} + v_{out} / r_{ds}$
 - so that $v = v_{out}/v_{in} = -g_m \times r_{ds}$ as before!

Numbers

- Typical gains are 10 ... 40
 - they depend on technology, current, transistor size,...

■ Therefore:
$$|v| = g_m r_{ds} = \frac{g_m}{g_{ds}} > 10 >> 1$$

or
$$g_m > 10 / r_{ds} = 10 g_{ds}$$

The transconductance g_m of a MOS is usually much larger than the output conductance g_{ds} .

This can often be used to simplify small signal expressions!

Comparing to 'abstracted circuits'

- The difference to the 'abstract circuits' exercise is that the 'current source' in the NMOS
 - does not provide 'negative' current when V_{IN} is negative
 output cannot rise above VDD
 - does not provide current any more when V_{OUT} is small (MOS gets out of saturation)
 - -> output cannot fall below GND
- The analogy is in the steep, central part
- There is an offset created by the threshold voltage

AC BEHAVIOR OF THE GAIN STAGE

Adding a Capacitive Load – 'The Speed'

With a capacitive load, we have another current path:

Current sum at output node = 0:

$$0 = g_{m} v_{in} + v_{out} / r_{ds} + s C_{L} v_{out}$$

Bode Plot of the Gain Stage

Remember: Gain-Bandwidth-Product

$$GBW = \frac{g_m}{C_L}$$

$$v = - \frac{g_m r_{ds}}{1 + s r_{ds} C_L}$$

Bode Plot for two current

- Increasing I_D
 - increases g_m and thus GBW
 - decreases r_{ds} and thus dc gain

Increasing the gain

- The gain of a single MOS is $v = g_m r_{ds}$.
- g_m ~ sqrt[2 K I_D W/L] (strong inversion)
- r_{ds} ~ L / I_D

	$I_D \rightarrow 2 I_D$ (strong inv.)	$I_D \rightarrow 2 I_D$ (weak inv.)	$I_D \rightarrow 2 I_D$ (vel. sat.)	W → 2 W (s.i.)	L → 2 L (s.i.)
g _m	$\rightarrow \sqrt{2} g_m$	$\rightarrow 2 g_m$	$\rightarrow g_m$	$\rightarrow \sqrt{2} g_m$	$\rightarrow g_m/\sqrt{2}$
r_{ds}	\rightarrow r _{ds} / 2	\rightarrow r _{ds} / 2	\rightarrow r _{ds} / 2	$\rightarrow r_{ds}$	$\rightarrow 2 \; r_{ds}$
V	\rightarrow v / $\sqrt{2}$	$\rightarrow V$	\rightarrow v / 2	$\rightarrow \sqrt{2} \text{ V}$	$\rightarrow \sqrt{2} \text{ v}$

- We see:
 - gain is increased by larger W or L and by smaller I_D
 - gain-bandwidth only depends on g_m , i.e. mainly on I_D

AC sweeps at different Operation Point

■ It the DC potential of V_{IN} is changed, we move to different points of the transfer curve:

Biasing the Gain Stage

- In practice (& in simulation), V_{GS} and I₀ must 'correspond'
- This can be achieved (for instance) by a 'diode' connection of the MOS
- In simulation: To *let signals pass through*, the connection is done with a very large resistor and the input signal is ac coupled with an ,infinite' capacitor.

■ In practice, other methods can be used...

Another View on the Bias Problem

- The resistor on the previous page forces V_{out}=V_{in}
- The operation point is the crossing between the *diagonal* (V_{out}=V_{in}) and the *transfer characteristic*
- This is usually a good point (maybe a bit low...)
- This works 'automatically' for changing bias & geometry

How about a Resistive Load?

 \rightarrow R and r_{ds} act in parallel: $v = -g_m \times (r_{ds} \parallel R)$

Non-Ideal (PMOS) current source

When a PMOS is used as current source, it ALSO has an output resistance.

- The transconductance part of the PMOS is off $(v_{gs} = 0)$
- The PMOS behaves just like a pure resistor (but r_{ds} is usually higher when in saturation)

Reminder: Transistor Characteristics

Visualization of Transfer Function: I-Load

Visualization of Transfer Function: PMOS Load

Load = Diode Connected (N)MOS

Visualization of Transfer Function: Inverter

CMOS Inverter

Now consider a CMOS inverter:

• g_m and r_{ds} of both MOS are in **parallel** • $v = -(g_{mN} + g_{mP}) \times (r_{dsN} || r_{dsP})$

INCREASING THE GAIN

How to get very high gain?

- g_m is very much limited by the current (can increase W…)
- r_{ds} can be increased by a cascode
- This leads to the 'straight' cascode gain stage:

Defines Current

Increase output
Resistance of PMOS

Fix V_D so that changes In V_{out} do not lead to current change in M1

Convert input voltage change to current change

Small Signal Analysis

- Assume bulks are connected to sources (no substrate effect)
 - Not always true in reality when NMOS are used...

■ EQ1 (current sum at node v_{out}):

$$-v_x g_{m2} + (v_{out}-v_x)/r_{ds2} + v_{out} s C_L = 0$$

■ EQ2 (current sum at node v_x):

$$-v_x g_{m2} + (v_{out}-v_x)/r_{ds2} = v_{in} g_{m1} + v_x/r_{ds1}$$

Solution

$$= H(s) = -\frac{gm1 rds1 (1 + gm2 rds2)}{1 + CL (rds1 + rds2 + gm2 rds1 rds2) s}$$

■ As usually g_m r_{ds} » 1, the parenthesis can be simplified:

■ H(s) ~
$$-\frac{gm1 rds1 gm2 rds2}{1 + CL gm2 rds1 rds2 s}$$
 (= single pole low pass)

- The *DC gain* is $|H(0)| = g_{m1} r_{ds1} \times g_{m2} r_{ds2}$ (i.e. *squared* wrt. a simple gain stage!)
- The bandwidth is $BW = (C_L r_{ds1} \times g_{m2} r_{ds2})^{-1}$ (decreased by same factor)
- The unity gain bandwidth is the same as simple stage!

GBW = BW ×
$$|H(0)| = g_{m1}/C_L$$

DC Sweep

Comparing Simple / Cascoded Gain Stage

- DC gain is increased by the 'gain' g_m × r_{ds} of the cascode
 - the cascode 'boosts' the output resistance
- The GBW remains unchanged
 - the current generated in M1 must charge C_L . The cascode does not help for speed ... We need more $g_m \rightarrow$ more power

How to get EVEN higher gain?

- Just like we have done in the 'regulated' mirror, we can use an amplifier to keep the drain of the amplifying MOS at constant potential.
- For the amplifier, we use (again) a simple gain stage...

With this method, a gain of 10.000 can be reached in one stage!

Increasing gain further

- The gain (left) is limited by the output cond. of the load M3
 - That is proportional to the current in the load
- Can we *reduce* the current in the *load*, keeping the current in the amplifying MOS M1 unchanged (for g_m)?
- Yes: Add an extra current to M1 at the cascode node:

For Experts: The 'folded' cascode

- The 'straight' cascode has some drawbacks
 - many MOS are stacked → dynamic range suffers
 - DC feedback (v_{out} = v_{in}) is marginal as v_{out} cannot go very low
- Alternative: use a PMOS to cascode the input NMOS M1:
 - Quite surprising that this works....

- Current in output branch is smaller than in M1 \rightarrow r_{out} is higher
- Note: It may look like this topology has non-inverting gain...

ADVANCED TOPICS

C_{GD}: Introducing a 'Zero' (Advanced Topic)

- Consider the effect of the gate-drain capacitance C_{GD}
 - Assume a finite driving impedance of the source R_S:

$$= H(s) = \frac{-gm \, rds + CGD \, rds \, s}{1 + CL \, rds \, s + CGD \, s \, (rds + RS + gm \, rds \, RS + CL \, rds \, RS \, s)}$$

New: We get a Zero - What Happens?

- We have $H(0) = -g_m r_{ds}$ as before.
- For R_S=0
 - The input signal propagates directly to the output via C_{GD}.
 - This same phase signal competes with the inverted signal through the MOS.
 - For very large frequencies, C_{GD} 'wins'.
 - We therefore have zero gain at some point
 - At high frequencies, we have a capacitive divider with gain < 1

Check your Understanding:

■ What is H(s) of a gain stage with a (NMOS) diode load:

- In strong inversion, this is the square root of the W-ratio
 - For instance: for $W_2/W_1 = 4$, the gain is ~ 2 .

THE CURRENT MIRROR - AGAIN

Active Regulation of the Drain Voltage

- The following circuit uses an amplifier with gain A₀ to keep V_D constant:
 - V_D is compared to a (fixed) reference V_{ref} .
 - $V_C = A_0 (V_{ref} V_D)$
- For better matching, the input must be cascoded as well..

Practical Realization

- The amplifier can just be a gain stage...
- This gives the ,regulated current mirror':

- Here, $A_0 \sim g_{m3} r_{ds3}$, Therefore $r_{out} \sim r_{ds1} \times g_{m2} r_{ds2} \times g_{m3} r_{ds3}$
- Note:
 - V_{DS} of M1 is ~ V_{TN} , which is higher than needed (wasting dyn.). (Using M3 with lower threshold helps)
 - Matching is not good, because V_{DS0} ≠ V_{DS1} -> add left cascode