

Source Follower and Differential Pair

The Source Follower (Common Drain Stage, SF)

- Current source I₀ pulls a constant current through the MOS
- This fixes V_{GS} of M1 (to V_T + Sqrt(...))
- Therefore, $V_{in} V_{out} = V_{GS}$ is *nearly* constant (see later)
- The small signal gain is close to 1

$$V_{out} \sim V_{in} - constant \rightarrow v_{out} \sim v_{in} \rightarrow g = v_{out}/v_{in} \sim 1$$

Simulation

- NMOS Source Follower with NMOS current source:
 - Starts to works when $Vin > V_{T,NMOS} + V_{DSat,Source}$

Real Source Follower (Here with substrate effect)

• r_{ds} of M1 and of current source

body effect (if body = ground): $i = v_{BS} g_{mb}$

■ gain =
$$\frac{gm \ rds \ ri}{rds + ri + gm \ rds \ ri + gmb \ rds \ ri} = \frac{gm}{gds + gr + gm + gmb} \sim \frac{gm}{gm + gmb + gds}$$
with $g_{ds} = 1 / r_{ds}$, $g_i = 1/r_i$ and $g_{ds} \ll g_m$...

■ Gain is always \leq 1. With $g_{mb} = (n-1) g_m$, gain $\sim 1/n \sim 0.7$

Source Follower with g=1?

- From $g = \frac{gm}{gds + gi + gm + gmb}$ we see that we approach g=1 with
 - gmb = 0 → connect bulk an source of M1. This is often not possible for NMOS (bulk = substrate = ground)
 - gi = $0 \rightarrow Make a good current source:$
 - long MOS
 - Cascode, ...

This will lead to higher V_{DSat} so that SF works ,later'

- gds = $0 \rightarrow \text{Hard}$.
 - Longer MOS helps, but gm suffers
 (ratio does not increase quickly, speed suffers)
 - Cascode not possible because we change source!
- Reaching an exact gain of 1 is not really possible!
- Obvious: If a SF is loaded by a resistive load, gain drops!

Advanced: Source Follower with finite source imp.

For instance a gain stage

- Consider the case when the SF is driven by a
 ▶,high impedance source (with output resistance R_S):
 - Take into account the Gate-Source cap. C_{GS} and output cap. C_L
 - neglect output impedances and g_{mb} for simplicity...

■ The transfer function has *two* poles:

■ There is an Overshoot as soon as $R_S > \frac{(Cgs + CL)^2}{4 Cgs CL gm}$

Simulation

■ 180nm Technology, W/L = $1\mu/0.18\mu$, $C_L = 100fF$, $I_{bias} = 10\mu A$

Therefore remember: Source Followers driving capacitive loads are *dangerous*!

What for?

- The Source Follower has a low output impedance (1/g_m)
- It can 'drive' low-impedance loads
- Gain drops 'only a bit'
 - (gain of a gain stage drops 'a lot' with resistive loads)
- Often used in combination with a gain stage:

Special Application

- SF be used to ,send' a voltage
- Multiple Source Followers can be combined:

THE DIFFERENTIAL PAIR

The (Differential) Pair

- Very often, the difference of voltages must be amplified
- The basic circuit are two MOS with *connected sources*:

■ Assume V₊ = V₋

•
$$\rightarrow$$
 $V_{GS,left} = V_{GS,right} \rightarrow I_{+} = I_{-} = I_{0} / 2$

- Assume V₊ > V₋
 - \rightarrow V_{GS,left} > V_{GS,right}
 - $\rightarrow |_{+} > |_{-}$
- Assume $V_+ \gg V_- \rightarrow I_+ \sim I_0$, $I_- \sim 0$

What is V_s ?

- V_S is (roughly) one threshold voltage below the *higher* input voltage
- It is often called the 'tail' voltage V_{tail}.
- The pair only works for input voltages > V_{TH}

 The tail current is normally provided by a current source which needs additional (saturation) voltage headroom

The Switching Voltage in *Strong* Inversion

- We have $ID[VGS_] = \beta (VGS VTH)^2$; with $\beta = K/2 W/L$
- We have 3 equations for 3 unknowns (I_P, I_N, V_S):

■ We get IP = $\frac{1}{2}$ (I0 + $\sqrt{\beta \triangle V^2}$ (2 I0 - $\beta \triangle V^2$) with $\Delta V = V_P - V_N$

We switch completely for

$$\Delta V_{SW} = \frac{\sqrt{I0}}{\sqrt{\beta}}$$

Conclusion: In strong inversion, pair can be fully switched!

The Switching Voltage in *Weak* Inversion

• We have
$$ID[VGS_] = \beta Exp\left[\frac{VGS}{n UT}\right]$$
;

• We get IP =
$$\frac{I0}{1 + e^{\frac{\Delta V}{n UT}}}$$
 with $\Delta V = V_P - V_N$ and UT = 25.6 mV

■ We switch in a few UT, but *never* switch 'really' completely

Conclusion: In weak inversion, pair switches at small voltages, but never fully!

The Differential Amplifier

• One 'output' current is often mirrored and added to the other:

Output Current of the Differential Amplifier

- If the output voltage is *fixed*, the *output current* is just I₊ I₋
- The circuit is a , Transconductor' (it converts $\Delta U \rightarrow I$)

Output Voltage of the Differential Amplifier

■ If *no current* flows out of the circuit and the output voltage is left free, we have *voltage* gain (the current pulls V_{out} hi/low)

Simulation

Sweeping V₋

■ V- = 0.2, 0.4,...1.6 V

Gain

- What is the (voltage) gain?
- To first order, it is as before the g_m of the *input* transistor(s) multiplied with the total impedance at the *output* (i.e. r_{ds} of the current mirror output in parallel to r_{ds} of the diff. pair)
- (The output resistance on the left branch do not matter, because the voltage there is kept nearly constant by the diode connected PMOS upper left...)

Comments

- Understanding the large signal behaviour for very different V_p, V_n is important, but in practical circuits, feedback is often applied so that $V_p = V_n$.
- Another important property is the *common mode input* range. This is limited by the V_{GS} of the input pair and the compliance of the tail current source: An *NMOS* differential pair *does not work* any more at *low* (common mode) input voltage.
- Another property is common mode gain, i.e. the change in output voltage if both inputs are changes simultaneously. In an ideal amplifier, common mode gain is 0.
- If the amplifier is loaded with a resistive load, gain drops. (as for the gain stage).
 - Therefore a source follower is sometimes added.
 - Stability in feedback circuits is then more tricky. Compensation methods are needed.

More Gain: Diff-Amp with Gain Stage

- The differential amplifier is often followed by a gain stage
 - This two-stage design has two ,main' poles and may need compensation if used in feedback configuration

- The 'steep' part of the transfer function of the first (differential) stage should coincide with the 'steep' part of the second stage!
- This can be achieved (for 3x equal PMOS) with $I_0 = 2 \times I_1$, so that $I_+ = I_- = I_1$ at the switching point.

Differential Pair + Current Mirror

■ The problem of limited output voltage swing for high input common mode can be solved by mirroring the currents:

Alternative topologies

- Many topologies are possible, using mirrors and cascodes
- For instance this 'folded cascode' configuration

