

The Source Follower

The Source Follower (Common Drain Stage, SF)

- Current source I₀ pulls a constant current through the MOS
- This fixes V_{GS} of M1 (to V_T + Sqrt(...))
- Therefore, $V_{in} V_{out} = V_{GS}$ is *nearly* constant (see later)
- The small signal gain is close to 1

$$V_{out} \sim V_{in} - constant \rightarrow v_{out} \sim v_{in} \rightarrow g = v_{out}/v_{in} \sim 1$$

Simulation

- NMOS Source Follower with NMOS current source:
 - Starts to works when $Vin > V_{T,NMOS} + V_{DSat,Source}$

Real Source Follower (Here with substrate effect)

- In reality, we must consider
 - r_{ds} of M1
 - the body effect of M1 (if $V_B \neq V_S$)
 - the finite output resistance of I₀
 - a possible load resistor

$$(vin - vout) gm + (0 - vout) gmb + \frac{(0 - vout)}{rds} = \frac{vout}{ro}$$

Real Source Follower (Here with substrate effect)

DC Gain:

$$gain = \frac{gm}{gds + gm + gmb + go}$$

- With $g_{ds} = 1 / r_{ds}$, $g_o = 1/r_0 + 1/R_L$
- Gain is always ≤ 1.
 - With body effect (remember: $g_{mb} = (n-1) g_m$), gain ~ 1/n ~ 0.7. Try to avoid body effect \rightarrow PMOS in well or triple well NMOS
 - A load resistance $R_L (\rightarrow g_o)$ lowers the gain. The SF cannot drive resistive loads well.
 - Output resistance of I₀ can be improved by long MOS or cascode.
- In transient situations, the NMOS SF can *source* a large current but can *sink* only I₀.

Source Follower with g=1?

- From $g = \frac{gm}{gds + gi + gm + gmb}$ we see that we approach g=1 with
 - gmb = 0 → connect bulk an source of M1. This is often not possible for NMOS (bulk = substrate = ground)
 - gi = $0 \rightarrow Make a good current source:$
 - long MOS
 - Cascode, ...

This will lead to higher V_{DSat} so that SF works ,later'

- gds = $0 \rightarrow \text{Hard}$.
 - Longer MOS helps, but gm suffers
 (ratio does not increase quickly, speed suffers)
 - Cascode not possible because we change source!

Advanced: Source Follower with finite source imp.

For instance a gain stage

- Consider the case when the SF is driven by a
 ▶,high impedance source (with output resistance R_S):
 - Take into account the Gate-Source cap. C_{GS} and output cap. C_I
 - We neglect output impedances and g_{mb} for simplicity...

Solving the current equations at the two nodes v_G and v_{out} yields the transfer function v_{out}/v_{in}:

$$\frac{\text{gm} + \text{Cgs s}}{\text{gm} + \text{s} (\text{Cgs} + \text{CL} + \text{Cgs CL RS s})}$$

Analysis

■ This Transfer function has two poles (denom. 2nd order in s)

■ The two poles are at
$$-\frac{\text{Cgs} + \text{CL} + \sqrt{\left(\text{Cgs} + \text{CL}\right)^2 - 4 \text{ Cgs CL gm RS}}}{2 \text{ Cgs CL RS}}$$

They become complex if the root is negative. This is at

$$RS \rightarrow \frac{(Cgs + CL)^2}{4 Cgs CL gm}$$

- There can be an *Overshoot* if R_S is *larger* than this value
- Worst case (smallest RS) is for $C_{gs} = C_{L}$. Then the limit is at RS = $1/g_{m}$

Analysis

■ This Transfer function has two poles (denom. 2nd order in s)

■ The two poles are at
$$-\frac{\text{Cgs} + \text{CL} + \sqrt{\left(\text{Cgs} + \text{CL}\right)^2 - 4 \text{ Cgs CL gm RS}}}{2 \text{ Cgs CL RS}}$$

They become complex if the root is negative. This is at

$$RS \rightarrow \frac{(Cgs + CL)^2}{4 Cgs CL gm}$$

■ There can be an *Overshoot* if R_S is *larger* than this value

Simulation

■ 180nm Technology, W/L = $1\mu/0.18\mu$, $C_L = 100fF$, $I_{bias} = 10\mu A$

Therefore remember: Source Followers driving capacitive loads are *dangerous*!

What for?

- The Source Follower has a low output impedance (1/g_m)
- It can 'drive' low-impedance (capacitive) loads
- Gain drops 'only a bit'
 - gain of a gain stage drops 'a lot' with resistive loads
- Often used in combination with a gain stage:

Special Application

- SF be used to ,send' a voltage
- Multiple Source Followers can be combined:

Advanced Followers

The 'Flipped Voltage Follower' (FVF)

- A VERY clever and tricky circuit!
- V_{out} 'follows' V_{in} (as with normal SF), but
 - gain is much closer to 1, in particular for resistive load
 - Output impedance is much lower
- The current I_{M1} through M1 is always I_0 , independent of load current $\rightarrow V_{GS1}$ of M1 is constant \rightarrow g is closer to 1
- Regulation:
 - Assume V_{out} raises
 - V_{GS1} drops
 - I_{M1} drops
 - More current flows into node x than out of x
 - $V_x = V_{GS2}$ rises
 - I_{M2} rises, pulling V_{out} low until V_{in}-V_{out} is restored
- FVF can sink a lot of current and source only I₀!
- Very clever!

Biassing Issue of the FVF

- Assuming no load current:
 - $V_x = V_{GS2}$ is fixed by I_0 . It is relatively 'low': $V_{TN} + \sqrt{...}$
 - When V_{in} becomes too positive, the drain voltage of M1 becomes too low. The circuit stops working.
 - Input voltage range is *increased* with (positive!) load current Because more current flows in M2 and Vx rises!

 $I_0 = 10uA$, $R_{load} = 10/100/1000 k$

Improvement – With Level Shifter

The saturation issue can be reduced by shifting voltage x with a 'normal' source follower:

If we have an MOS with high threshold, this helps for M2!

Simulation of improved version

Improvement – With Cascode

- We can also separate V_x from the gate of M2 and force V_x to a voltage with a PMOS cascode
 - Choose V_{casc} such that I_0 is just saturated for max. dyn. range

Simulation of Cascode Version

'Super Source Follower'

■ The 'Super Source Follower' is another circuit which keeps the current in M1 independent of the load current by providing a second current source (M2) for the load:

Back to the Normal SF

■ For V_{BS}=0, no RL, and a 'good' current source, the gain of the 'normal' SF is limited by the Early effects in M1.

$$gain = \frac{gm}{gds + gm + gmb + go}$$

- The 'problem' is that V_{ds} of M1 changes with V_{out}
- Can we avoid that ? Yes!
 We 'cascode' the source to a voltage that follows V_{out}:

