

The Differential Pair

The (Differential) Pair – The Principle

- Very often, the difference of voltages must be amplified
- The basic circuit are two MOS with *connected sources*:

■ Assume V₊ = V₋

•
$$\rightarrow$$
 $V_{GS,left} = V_{GS,right} \rightarrow I_{+} = I_{-} = I_{0} / 2$

- Assume V₊ > V₋
 - \rightarrow V_{GS,left} > V_{GS,right}
 - $\rightarrow |_{+} > |_{-}$
- Assume $V_+ \gg V_- \rightarrow I_+ \sim I_0$, $I_- \sim 0$

What is V_s ?

- V_S is (roughly) one threshold voltage below the *higher* input voltage
- It is often called the 'tail' voltage V_{tail}.
- The pair only works for input voltages > V_{TH}

 The tail current is normally provided by a current source which needs additional (saturation) voltage headroom

The Switching Voltage in *Strong* Inversion

- We have $ID[VGS_] = \beta (VGS VTH)^2$; with $\beta = K/2 W/L$
- We have 3 equations for 3 unknowns (I_P, I_N, V_S):

- We get $I_P = \frac{1}{2} \left(I_0 + \sqrt{\beta \triangle V^2 \left(2 I_0 \beta \triangle V^2 \right)} \right)$ with $\Delta V = V_P V_N$
- We switch completely for

$$\Delta V_{SW} = \frac{\sqrt{I0}}{\sqrt{\beta}}$$

Conclusion: In strong inversion, pair can be fully switched!

The Switching Voltage in *Weak* Inversion

• We have
$$ID[VGS_] = \beta Exp\left[\frac{VGS}{n UT}\right]$$
;

• We get
$$I_P = \frac{I0}{1 + e^{\frac{\Delta V}{n UT}}}$$
 with $\Delta V = V_P - V_N$ and $UT = 25.6 \text{ mV}$

■ We switch in a few UT, but *never* switch 'really' completely

Conclusion: In weak inversion, pair switches at small voltages, but never fully!

The Differential Amplifier

■ One 'output' current (I₊) is often mirrored and added to the current of the other side (I₋):

Output Current of the Differential Amplifier

- If the output voltage is *fixed*, the *output current* is just I₊ I₋
- The circuit is a , Transconductor' (it converts $\Delta U \rightarrow I$)

Output Voltage of the Differential Amplifier

■ If *no current* flows out of the circuit (the output voltage is left free), we have *voltage* gain (the current I₊-I₋ pulls V_{out} hi/low)

Simulation

Sweeping V₋

 $V_N = V_1 = 0.2, 0.4, ... 1.6 V$

Gain

- What is the (voltage) gain?
- To first order, it is as before the g_m of the *input* transistor(s) multiplied with the total impedance at the *output* (i.e. r_{ds} of the current mirror output in parallel to r_{ds} of the diff. pair)
- (The output resistance on the left branch do not matter, because the voltage there is kept nearly constant by the diode connected PMOS upper left...)

Comments

- Understanding the large signal behaviour for very different V_p, V_n is important, but in practical circuits, feedback is often applied so that $V_p = V_n$.
- Another important property is the *common mode input* range. This is limited by the V_{GS} of the input pair and the compliance of the tail current source: An *NMOS* differential pair *does not work* any more at *low* (common mode) input voltage.
- Another property is common mode gain, i.e. the change in output voltage if both inputs are changes simultaneously. In an ideal amplifier, common mode gain is 0.
- If the amplifier is loaded with a resistive load, gain drops. (as for the gain stage).
 - A source follower is therefore sometimes added.
 - Stability in feedback circuits is then more tricky. Compensation methods are needed.

More Gain: Diff-Amp with Gain Stage

- The differential amplifier is often followed by a gain stage
 - This two-stage design has two ,main' poles and may need compensation if used in feedback configuration

- The 'steep' part of the transfer function of the first (differential) stage should coincide with the 'steep' part of the second stage!
- This can be achieved (for 3x equal PMOS) with $I_0 = 2 \times I_1$, so that $I_+ = I_- = I_1$ at the switching point.

Differential Pair + Current Mirror

■ The problem of limited output voltage swing for high input common mode can be solved by mirroring the currents:

Alternative topologies

- Many topologies are possible, using mirrors and cascodes
- For instance, this 'folded cascode' configuration:

