
Intel®

Technology
Journal

Intel® Pentium® 4 Processor on 90nm Technology

Volume 08 Issue 01 Published, February 18, 2004 ISSN 1535-864X

LVS Technology for the
Intel® Pentium® 4 Processor

on 90nm Technology

A compiled version of all papers from this issue of the Intel Technology Journal can be found at:
http://developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm

LVS Technology for the Intel® Pentium® 4 Processor on
90nm Technology

Dan J. Deleganes, Desktop Platforms Group, Intel Corporation
Micah Barany, Desktop Platforms Group, Intel Corporation

Daniel Chow, Technology and Manufacturing Group, Intel Corporation
Tom D. Fletcher, Desktop Platforms Group, Intel Corporation

George L. Geannopoulos, Technology and Manufacturing Group, Intel Corporation
Kurt Kreitzer, Desktop Platforms Group, Intel Corporation

Anant P. Singh, Desktop Platforms Group, Intel Corporation
Sapumal B. Wijeratne, Technology and Manufacturing Group, Intel Corporation

Index words: X86 integer core, adder, sense-amplifier, adder, rotator, microprocessor, Low-Voltage
Swing, LVS

ABSTRACT
To meet the demands of low-latency integer operations,
the Intel Pentium® 4 processor architecture implements
fast integer operations using a 2x frequency core clock.
The frequency advances enabled by Intel’s new 90nm
technology when paired with a 2x frequency multiplier
require novel circuit topologies if latency is to be
optimized. The discussed solution uses unprecedented
levels of small signal random logic to implement a double
frequency X86 integer core. This circuit technology,
termed “Low-Voltage Swing” (LVS) enables the Pentium
4 processor [1] to take full advantage of Intel’s new 90nm
technology [2].

INTRODUCTION
Microprocessor performance can be defined as the
product of latency and parallelism. Since parallelism has
been well exploited in previous microprocessor
generations, the integer performance in the Intel Pentium
4 processor architecture is achieved using ultra-low-
latency integer operands. The reduced latency when then
paired with Hyper-Threading Technology (parallelism)
empowers a one-generation-ahead design. Like the
preceding Pentium 4 processor designs, the newest
member of the family on Intel’s 90nm technology enables
ultra low-latency integer ops by running the integer core

at twice the core frequency of the microprocessor. At
today’s clock rates, this operating frequency is in and of
itself notable. For example, a 3.4 GHz processor would
have the integer logic functioning at 6.8 GHz. Such a
frequency target is on the low end of 90nm technology
capabilities–that is, at the beginning of process life. End-
of-life process technology frequency expectations are far
higher. In this paper, we describe the implementation of
the newest Pentium 4 processor integer logic core using
Low-Voltage Swing (i.e., differential small signal) logic.
This circuit topology, referred to most frequently as
“LVS,” is designed explicitly to take advantage of the
frequency headroom enabled by Intel’s new 90nm
technology. In this paper we explain the overall circuit
topology, and take you on a walk-through of three core
blocks: the Alignment Mux, Adder, and Rotator. A
section describing the tools/methodologies for pre-silicon
verification necessary for high-volume manufacturing
(HVM) is outlined, which includes small signal path
tracing, merging dynamic and static timing, and matched
layout. Finally, you will see up-to-date post-silicon data
demonstrating the integer core running at higher
frequencies than any other published X86 integer cores.

 Intel and Pentium are registered trademarks of Intel
Corporation or its subsidiaries in the United States and
other countries.

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 43

Intel Technology Journal, Volume 8, Issue 1, 2004

DCN
(datapath)

LVS Cycle Time for Operation

CDLDCN CDL

Single
ended
WBB input

Gain stages Carry chain5:1 Mux
plus logic

Ph1 SA

Front-end LVS Black Box

Fast Clock
2x Core clock

CDL

Thru-
Gate

Performs logic
(Decode, PGK,etc)

Reset clk

Figure 1: LVS circuit block diagram

LOW-VOLTAGE SWING LOGIC AT
INTEL
In 1997 Intel researchers began investigating ways to
continue designing the Intel Pentium 4 architecture’s 2x
frequency integer core on process technologies many
years in the future. Looking several generations ahead,
they were concerned that the self-resetting domino
topologies used so effectively in the original Pentium 4
design would need to be replaced with even faster circuit
topologies, if the integer core was to keep pace with the
capabilities of future manufacturing technologies. These
researchers, led by our co-author Tom Fletcher,
determined that large Diffusion Connected Networks
(DCN) with multiple inputs and outputs could be used to
implement significant logic functions in a single stage.
Although such structures are excruciatingly slow at
creating standard CMOS voltage levels, it was recognized
that by using differential (true and complement)
functions, the resulting “small signal” voltages could be
differentially sensed and amplified into a “large signal.”
This circuitry operated faster than even our fastest
domino circuits. The delays through two stages of sense
and gain were costly, but since the diffusion connected

network was capable of doing six to eight stages of logic
in a single stage, the overall time to implement a complex
logic function was a net performance win over other
topologies. Furthermore, it was determined that such
networks could readily take advantage of straightforward
pass-gate algorithms, such as carry skip addition, to
minimize the number of series devices. The resulting
differential Low-Voltage Swing (LVS) topology used
fewer transistors to implement a given logic function,
which lead to an area advantage over traditional static or
domino circuits. The topology also promised low-power
opportunities at equal frequencies due to reduced voltage
transitions. The performance of speed, area, and power
wins led to the technology being selected for the next-
generation design. During technology development, the
LVS circuit topology that delivered the best performance
operated like domino logic, with evaluate and reset
phases. The higher linear region currents of N-transistors
make them the device of choice for DCN pre-conditioned
to ground being selected. A P-type sense amplifier senses
the differential output of these pass-gate DCNs.

The potential gains of this new topology promised to be
significant. However, the design complexity was
identified as a major concern. The sheer amount of small

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 44

Intel Technology Journal, Volume 8, Issue 1, 2004

signal logic that would be needed to implement an entire
X86 logic core was unprecedented. Consider this: the
transistor count of this execution core exceeds that of the
entire Pentium Pro design! There were no tools for timing
analysis, noise analysis, or logic verification. To
minimize the differential and common-mode noise, new
layout checks were needed to ensure that custom devices
in random logic met analog layout requirements. Pulsed
clocks required careful crafting. Clearly, the challenges of
implementing an entire Pentium 4 integer core using
small signal circuits to implement logic functions would
be an extreme challenge. The work began!

LOW-VOLTAGE SWING CIRCUIT
ARCHITECTURE
Figure 1 shows the basic topology of the LVS circuits
used. An LVS circuit, called the Front End (FE),
implements an LVS multiplexer to select among the Write
Back Buses and the Source Buses. For simplicity, the
DCN diagram shows only two N-pass-gates connected to
each node, when in reality, each node would have
multiple inputs. The Complementary Domino Logic
(CDL) gain stage restores the sense-amplifier output’s
ratioed voltage levels. The CDL in most cases also
implements logic; for example, in the Adder this would
be a Propagate, Generate, Kill (PGK) function generator.
Also shown is the thru-gate, which acts as a min-delay
blocker by gating static data entering the DCN. The thru-
gate is controlled by a clock that turns on one inversion
after the de-assert of the reset clock. By ANDing the thru-
gate clock with a logic signal, one series device can be
removed, further improving speed. In Figure 1, the carry
chain is collected into a second LVS blackbox that
produces the result of a 16-bit add.

Figure 2: Sense-amplifier and CDL inverter followed
by a CMOS inverter

Figure 2 illustrates the ratioed P-type sense-amplifier
driving a simple CDL inverter. The reset devices are
removed to simplify the diagram. The outputs of the LVS
carry-chain DCN connect to “SA IN” and its
complementary pin. The timing relationships between the

LVS DCN, the sense-amplifier, and the CDL are shown
in Figure 3. The sense-amplifier and the CDL are in phase
and are controlled by the clocks named “SA EN” clock
and “CDL CLK,” respectively. The rising edge of “SA
EN” clock initiates the reset of the sense-amplifier
outputs, and it is immediately followed by the precharge
of the CDL outputs. During this time the LVS DCN
(carry-chain) is in evaluation and generates a differential
voltage at the inputs of the 17 receiving sense-amplifiers
of the 16-bit adder. The falling edge of the “SA EN”
clock triggers evaluation of these sense-amplifiers. This
event is depicted in Figure 3 with a vertical line that
intersects the 50% transition point of the falling “SA EN”
clock. In this example, it can be seen that at the sense-
amplifier trigger point, the input differential is
approximately 344 mV with 49 mV of common mode.
The lower plot in Figure 3 illustrates the sense-amplifier
outputs resolving this input differential. The non-zero
offset level on the sense-amplifier ‘0 output can be seen
to induce a glitch on the non-switching terminal of the
CDL (middle plot) that is mitigated by the cross-coupled
P-keepers on the CDL. The magnitude of this glitch is a
decreasing function of the sense-amplifier input
differential. Below a certain minimum input differential
voltage, the CDL glitch could potentially induce a domino
false-discharge failure mechanism on the CDL output,
resulting in a speedpath or logic failure.

It can be seen in the bottom plot of Figure 3 that the DCN
reset clock resets the inputs of the sense-amplifier shortly
after the sense-amplifier trigger point. In fact the DCN
reset is initiated only one inversion after the sense-
amplifier. If the inputs to the sense-amplifier are reset
before the sense-amplifier resolves, then a functional
failure will occur. The part will then not operate at any
frequency. This race is known as the “sense versus reset”
race, and it is the only functional race in this LVS design.

A typical LVS circuit is allocated only about two
inversions to develop differential!

Full details on the adder circuitry are detailed in the
Adder Circuit section below.

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 45

Intel Technology Journal, Volume 8, Issue 1, 2004

g l i t c hg l i t c h

Figure 3: LVS waveforms

CLOCKING
The core logic of the CPU is running at the specified
processor frequency. For a 3.5 GHz core clock frequency,
the Main Core Clock (MCLK) period is about 285 ps.
The pulsed Fast Clock (FCLK) doubler circuit doubles
the MCLK frequency, in this case to 7 GHz. One FCLK
phase is allocated for LVS DCN signal development, and
the other FCLK phase is allocated for DCN precharge.
The pulsed clocks used on the previous 2x Intel Pentium
4 integer cores were ideal for clocking LVS circuits
because they would only stop in the reset phase. This
meant that when the clock was stopped there would be
zero source drain leakage for the pass-gates because all
nodes would be reset to ground. The pulsed FCLK is
generated by combining two tunable NAND chopper
delay circuits into a pseudo wired-or. One chopper is
sourced from the MCLK, the other, one inversion later. In
order to provide symmetric FCLK pulses for both phases
of the MCLK, the low phase of the MCLK is one
inversion delay longer than the high phase to account for
the additional inversion to the second chopper. This non-
fifty percent duty cycle of the MCLK allows the core
circuitry to do more work in the low phase of the MCLK
for the non-LVS MCLK circuitry, but limits the
bandwidth of the global clock distribution more than if it

was a true fifty percent duty cycle clock. Figure 4 shows
the clocking edge relationships.

MCLK

True
Pulse

Inverted
Pulse

FCLK

FCLK Generation and Jitter Relationship

Figure 4: Fast Clock (FCLK) timing edge
relationships

Clock skew and jitter posed significant challenges to LVS
design, especially as these would degrade an FCLK phase
speedpath four times as much as an MCLK cycle path.
Exact control of the MCLK high and low phases have a
direct impact on the allowable time for the low phase of
FCLK; if either phase of MCLK gets smaller, the FCLK
low phase will also get smaller by the same amount. A
key advantage of pulsed clocking is that the FCLK high
phase is not affected by MCLK jitter and skew, since both
FCLK edges are generated from the same MCLK edge.

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 46

Intel Technology Journal, Volume 8, Issue 1, 2004

With cycle-to-cycle jitter, just the low phase of the FCLK
will be impacted. The design of the LVS blocks took
advantage of these effects and accounted for them directly
during timing analysis.

LOW-VOLTAGE SWING USAGE WITHIN
THE INTEGER CORE
Figure 5 provides an architectural block diagram,
showing the critical integer core components. LVS
circuitry enabled the Intel Pentium 4’s low latency, used
in the critical L0 load pipeline’s alignment mux, adders,
logic unit, rotator, and the address generation unit. Details
of LVS used for the adder, rotator, and alignment mux
circuits are given below.

...
.

...
.

...
.

...
.

...
.Load and Store

Address to L0
Cache sub-system

and MEU

Data from L0

Alignment
Mux

Flag LogicResult
from

slow-port

Se
gm

en
t B

as
e

D
is

pl
ac

em
en

t

144-entry
integer

register file

Alu0: Adder + Basic LogicAlu1: Adder + Shifter/RotatorAddress Generation Unit

Alu0 Operands

Alu1 Operands

AGU Operands

Write-Back
Buses

= LVS block

Figure 5: Integer core architectural diagram showing
LVS usage

Adder Circuit
The LVS carry chain for a 16-bit adder is shown in Figure
6. It is built upon 16 cascaded LVS PGK cells, named “0-
F,” with carry-skip pass-gates “s0-s9” placed between
them such that the span of any carry propagation path is
limited to no more than 6 series devices. The LVS cells
that make up the LVS carry-chain are shown in Figure 7.
The LVS XOR gates in Figure 7 hook up to each polarity
of the carry [n] nodes along the carry-chain to produce the
sum [n+1] result. The typical critical path begins with the
turning ON of the “s0” skip pass-gate that allows the
“Cin” to charge up the precharged-low carry-chain and
develop differential at the inputs of 17 PMOS sense-
amplifiers that sense the 16 bit sum and the carry out.
This 16 bit adder spans half the datapath height. It’s
length represents the total interconnect distance that has
to be traversed for a carry-chain to propagate from “Cin”
to “Carry<15>.” A bit slice of the LVS adder, including
adder PGK controls and clocking, is shown in Figure 8.
The LVS front-end evaluates in phase 2 of the FCLK and
presents source data to the first sense-amplifier “P-SA-1”
that is triggered on the fall of the “ckxf1pb6_b” clock.
The next stage “CDL-1” is an inverting level-restoring
stage that has integrated PGK logic. This circuit is a

complex CDL gate that begins evaluation on the rise of
the “ckxf1p7c” clock. Exactly one FCLK phase later the
fall of the “ckxf1p7c” clock triggers the 17 sense-
amplifiers commonly titled “P-SA-2” (see Figure 8) that
capture the sum and carry results of the 16 bit LVS adder.

Typically, the critical path goes through the “gp [n]”
group-propagate signals. The wide NOR gates that
generate “gp [n]” group-propagate functions are allocated
only 16 ps. A conventional design of a fast ratioed-NOR,
similar to the one illustrated in Figure 9, could not be
used to implement wide, single-stage, precharged-low
NOR functions required by the LVS adder. For certain
input combinations, the gates’ pull-up and pull-down
networks are on simultaneously, and for these cases the
ratioed-NOR gate’s output can produce a steady-state
noise source that is typically in the ~200-400 mV (Vcc =
1.2 V, 1262) range. A novel p-interruptible ratioed-NOR
gate (RP-NOR), illustrated in Figure 10, was designed in
place of a ratioed-NOR (RNOR) gate. RP-NOR gates can
implement fast NOR2-NOR5 gates while limiting the
contention-induced noise to a small and narrow glitch.
The signals “pc,” “pa,” “pb” are the inverse of “pcn,”
“pan,” and “pbn,” respectively. All inputs are precharged
high. During precharge, the top P-device is on, enabling it
to precharge the internal node n1 thus facilitating a fast
rising transition. If “pdn” falls, then the P-stack is enabled
and the NOR will begin to rise. This transition is allowed
to continue only if “pan,” “pbn,” and “pcn” also fall,
because this is the only condition for which the top P-
device will remain enabled. For all other combinations,
the P-device is disabled within one gate delay, limiting
the contention to a narrow pulse that is approximately one
gate delay wide. Figure 11 shows the comparison of the
RP-NOR contention noise pulse to the DC contention
waveform produced by a RNOR within the context of the
LVS adder’s evaluation window. A RNOR produces a
contention waveform that exists for the entire duration of
the LVS evaluate window, allowing the off skip device
driven by it to leak opposite charge onto the carry-chain,
degrading or even destroying the DCN signal
development. The new RP-NOR, however, produces its
contention glitch only at the onset of LVS evaluation
leaving the carry-chain a significant amount of time to
recover and develop positive differential unimpeded by
any further contention-induced differential noise.

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 47

Intel Technology Journal, Volume 8, Issue 1, 2004

Span = 178.2 u on 1262 process

0 1 2 3 4 5 6 7 8 9 A B C D E F

s0

s1

s2

s3

s5

s4 s6

s9

s7
s8

Cin Carry<15>

Span = 178.2 u on 1262 process

0 1 2 3 4 5 6 7 8 9 A B C D E F

s0

s1

s2

s3

s5

s4 s6

s9

s7
s8

Cin Carry<15>0 1 2 3 4 5 6 7 8 9 A B C D E F

s0

s1

s2

s3

s5

s4 s6

s9

s7
s8

Cin Carry<15>

Figure 6: 16-bit adder LVS carry-chain structure

Figure 7: LVS PGK and XOR cells used in the LVS carry-chain

W
B-

bu
s p _ b

p

g _ b , k _ b

L V S f ro n t-e n d

P -S A -1

C D L -1

ck
x

f1
pb

6
_b

p
_b

[0
]

g p [0]]p _ b [2 :1]

g [0] /k [0]

p [0]

p _ b [0]

c k x f1 p 7 c

L
V

S
 A

dd
er

ck
xf

1p
7c

ck
xf

1p
d8

_
b

P -S A -2

C D L -2
g _ b [0] /k _ b [0]

re
se

t

W
B-

bu
s p _ b

p

g _ b , k _ b

L V S f ro n t-e n d

P -S A -1

C D L -1

ck
x

f1
pb

6
_b

p
_b

[0
]

g p [0]]p _ b [2 :1]

g [0] /k [0]

p [0]

p _ b [0]

c k x f1 p 7 c

L
V

S
 A

dd
er

ck
xf

1p
7c

ck
xf

1p
d8

_
b

P -S A -2

C D L -2
g _ b [0] /k _ b [0]

re
se

t

Figure 8: Logic for adder bitslice

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 48

Intel Technology Journal, Volume 8, Issue 1, 2004

Figure 9: A 4-input ratioed NOR (R-NOR) gate

Figure 10: A 4-input ratioed P NOR (RP-NOR) gate

Figure 11: Contention behavior of ratioed-NOR gate
(RNOR) versus new RP-NOR gate

Alignment Mux Circuit
LVS makes possible the implementation of the Alignment
Mux function in an MCLK phase (144ps), reducing the
critical “load pipeline” latency in the integer core. It
provides a 2x speed improvement over the traditional
multi-stage domino design. The Alignment Mux datapath
function consists of 128 individual 32:1 dual rail muxes
distributed across the datapath width of the entire L0
cache. Muxing is performed with a single-stage DCN pair
followed by the large distributed mux node connected to
the sense-amplifiers. This RC requires designing the

Alignment Mux at MCLK frequencies, whereas all other
LVS blocks operate at FCLK. Source inputs to the DCN
are full-swing dual rail signals from the L0 cache. The
clock gated control logic generates the full-swing DCN
selects, which are replicated across the entire mux height
to reduce loading and RC. Figure 12 shows the circuit
topology of the Alignment Mux.

D
C

B

A
O

32
:1

 m
ux

di
st

rib
ut

ed
ac

ro
ss

90

0u
m

S
ou

rc
e

in
pu

t d
riv

er
s

P-SA

C
D

L

O
ut

pu
t d

riv
er

s

4Bytes differential
data for integer
16Bytes single

Ended for FP

L0
-C

ac
he

 in
pu

ts
 (

F
ul

l S
w

in
g)

Figure 12: Alignment Mux circuit block diagram

LVS was the ideal technology for the Alignment Mux,
with its muxing and distributed RC. LVS technology
proved crucial in reducing the L0 cache latency and has
enabled aggressive frequency headroom for subsequent
Pentium 4 steppings.

LVS Rotator and Shifter

The LVS rotator/shifter performs these operations (ops):
Rotate Left (ROL), Rotate Right (ROR), Shift Left (SHL),
Shift Right (SHR), Shift Arithmetic Right (SAR), Byte Swap,
and High-Low Swap. The only 8-bit operations supported are
“8L,” performed on bits [7:0] of the operand. “8H” rotates
and shifts are done in the Intel Pentium 4 processor slow port
datapath and are longer latency operations. For 8-bit and 16-
bit rotates and shifts, the remaining bits of the operand are
passed through unchanged to the result. For SHL and SHR
ops, the value of ‘0 is padded in from the least significant or
most significant position, respectively. For SAR ops, the value
of the most-significant bit is padded in from the most
significant position.

Rotate and shift operations are done by first rotating the
operand according to the shift count, and then selecting either
the rotated value or the “kill value” to produce the final result.
The kill value is always ‘0 for SHL and SHR ops, and it is the
size-appropriate, most-significant bit for SAR ops.

As in reference [3], the block algorithm takes advantage of
symmetry to streamline the rotation portion of the datapath.

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 49

Intel Technology Journal, Volume 8, Issue 1, 2004

Right rotates with a shift count of r are done by rotating the
operand to the left by r# + 1 places. For right ops, the shift
count is complemented prior to entering the shift count decode
logic, and the extra “+1” place is taken care of in the datapath.

Rotator circuits are traditionally a series of muxes wired up
with long interconnects to steer the operand over the length
and breadth of the datapath. This makes the rotator particularly
suited to LVS technology. The datapath muxes are
implemented with a wide DCN that ends up at 32 sense-
amplifiers for the “prop value” and an additional 32 sense-
amplifiers for the “kill value.” A final muxing stage selects
between the outputs of these two sets of sense-amplifiers. The
selects for this muxing stage are bitwise. The complex shift
logic is implemented using LVS circuits. The decode of the
shift and rotate count is done in the Front-End by embedding
logic into the CDLs and the subsequent static logic stage. LVS
technology has enabled us to implement Fast Rotate and Shift
ops in Pentium 4 processors, which provides a significant and
measurable performance gain.

TOOLS AND METHODOLOGY
A large challenge to enabling the design of LVS circuitry
was to provide the innovative tools and methodologies
that enabled us to successfully apply this technology to a
HVM environment. We created LVSTNT (LVS Timing
and Noise Tool), a custom dynamic simulator and
interface, that calculates required and valid times for
groups of data and pass-gate signals interfacing with the
LVS circuitry. These results were merged with our
project standard static timing tools and flows. A custom
LVS Layout Rule Checking (LRC) tool was developed to
eliminate non-common mode noise and to ensure layout
matching that can tolerate process variation.

Dynamic Simulation and Timing Issues
LVS timing performance depends upon the relative
arrival of dozens of signals, followed by the generation of
a small differential signal, which requires a uniquely
complicated timing analysis. In contrast, traditional static
timing analysis simply assumes that a single signal
generates a timing path. And unlike a typical dynamic
simulation, which simply verifies that a circuit operates at
a target frequency, our LVSTNT dynamic simulator
provides a key advantage by calculating the worst-
required times for the input signals. By having the
required times, we know how much timing margin a
given input has, enabling us to make valuable
area/power/delay trade-offs. To avoid exponential growth
in the number of timing paths when calculating the
required input timings of combinations of multiple
signals, we made creative, specific assumptions to
maintain a linear number of simulations. And even after
pruning the number of timing paths using patented
algorithms [4], the rotator alone required simulations on

more than 60,000 paths to characterize the circuit. To
address the associated huge runtime and database size,
LVSTNT partitions the LVS circuitry into the minimum
database needed to dynamically simulate each unique
path. We can quickly, interactively, simulate a single path
of interest. As even a single path requires 3-12
simulations to find the passing conditions and input
required times, understanding so many simulation results
proves daunting, so LVSTNT automatically merges the
worst-case results from all simulations for dozens of
timing constraints. While analyzing the complete circuit,
we batch and send all simulations to our compute farms,
utilizing hundreds to thousands of machines worldwide.

Transparently clocked designs provide greater tolerance
to clock skew on silicon, which is a significant portion
(15-20%) of the FCLK cycle time. The LVSTNT required
times are merged into our normal static timing tools,
enabling us to take full advantage of transparency through
latches and domino state elements. To provide a
transparent timing interface, DCN selects and dual rail
data inputs were ideally designed to be precharged.
During evaluate, the DCN select gate inputs and data and
data# inputs would transition monotonically; if this occurs
after the thru-gate opens, then we have a nicely
transparent timing path. This elegant interface is not
feasible when just single rail data inputs are available
because both data and data# cannot be precharged to
ground. Generating data# locally, results in either data or
data# starting out high before evaluate, and as the first
pass-gate opens, the DCN would start developing the
opposite logic value before developing the correct small
signal waveform. This posed significant simulation
modeling challenges. Aiming for a robust design, we
decided to prevent generating this wrong differential by
adding an extra clocked n device, the thru-gate, and then
requiring that data be set up to the thru-gate opening.
While the thru-gate intrinsically slows the circuit, due to
the additional n device in series, this greatly simplified
the timing complexities of both dynamic and static
analysis, enabling robust tools.

Determining whether the circuit operated or failed raised
many questions in our challenge to enable HVM. Sense-
amplifiers in the ideal world of a dynamic simulator
resolve with just a few electrons. On silicon, the coupling
noise to signal waveforms and power supply alone
contribute significant complexity to an ideal model. A
few failure criteria are described below.

An initial failure criterion used during pre-silicon
verification was the magnitude of the CDL output glitch.
If this noise glitch propagated to a subsequent domino
stage or state element, a logic error or severe speedpath
could occur. This provided an easily implementable
pass/fail criterion that was based upon an observable

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 50

Intel Technology Journal, Volume 8, Issue 1, 2004

circuit failure. In standard CMOS designs, noise tools
verify that the circuit will not falsely discharge a domino
node. In LVS designs, we not only guarantee this will not
happen, but this failure point can directly dictate the
required set-up times to the sense-amplifier. Traditional
static and dynamic circuits never attempt such closely
intertwined timing and noise requirements.

A second failure criterion mandated a minimum
differential voltage. The total requirements ranged from
50-100 mV, or roughly 5-10% of VCC. Device variations
due to process (Le, Vt, dual-Vt, etc.) was analyzed for our
library of sense-amplifiers, and accounted for nearly half
of the signal voltage requirement, with the remaining
attributable to incomplete precharge, noise, and the
inherent differential needed to sense correct data. This
requirement enhances confidence in the design, and it
covers several corner cases and simulation artifacts not
caught by the CDL failure criterion.

A third criterion avoids designing non-full-rail static
signals, which static timing tools ignore, but are very easy
to create at such extremely high frequencies. While a
dynamic simulator shows circuit robustness with non-full-
rail input signals, real silicon in HVM would not be
nearly as forgiving. An additional motivation in avoiding
non-full-rail signals is the inability to define them when
we translate waveforms back to the static timing tool
environment.

Functional race analysis across process corners poses
additional failure, modeling, and runtime concerns. Our
implementation contains just one functional race, the
sense-amplifier enable assertion to the DCN reset clock.
Minimizing functional races (mindelays) is important,
because if they fail to make speed, the part will not
function at any frequency. If mindelays had occurred,
they would have required significant timing guard band
(impractical at these frequencies), and/or significant effort
to simulate the circuit (with additional timing paths)
across process variation. In light of design for debug and
testability, we added software controllable circuitry to
vary our functional race margins.

Merging Static and Dynamic Timing Tools
Creative solutions enabled interfacing our dynamic timing
tools with standard project tools into a seamless tool flow
that could be batched. Specific attention was paid to
drawing a precise boundary of what was dynamically
analyzed: for dynamic simulation. We automated netlist
extraction to form a black box containing just the data
inverters, DCN, sense-amplifiers, and CDL. LVSTNT
provided the minimum number of timing edges, leaving
the project static timing tools to analyze all but the small
signal development and failure criteria. To enable the
static tools to analyze the black box for the remaining

edges, we fully automated the generation of timing tool
assertions. For example, the set-up of static data falling
would be checked against the thru-gate clock rising.
Outside the black box, static timing tools analyze the
select and data timings and convert their timings into
waveform inputs to the dynamic simulation. Black box
interface timings come from a combination of the
dynamic simulator, the static simulator, or a worst-case
merging of max and min timing. (Providing details on
over 30 classes of signal types, domino, static, etc., and
edges, rise, fall, lead, trail, is beyond the scope of this
paper.) The fully automated performance verification tool
suite provides a huge return on investment, given the
design size, complexity, and multi-year life cycle of a
production processor. This automation greatly increased
our productivity, providing consistency of assumptions
among our designs, and it enabled high-quality audits of
the correctness and thoroughness of our checks.

Dynamic Noise Analysis of LVS
Noise easily overwhelms the tens of millivolts of signals
inspiring us to support dynamic noise simulation directly
within our LVSTNT timing tool. Project noise analysis
tools provided the input waveforms, based on the circuits
(static or LVS) driving into the LVS block. LVSTNT
super-imposes DC and pulse-wise-linear noise waveforms
onto the DCN data and select gates. Logically off devices
will result in their gates being slightly turned on, with the
device’s source tied to the rail that provides worst-case
leakage, with respect to the signal being developed. The
methodology and algorithms are fairly complicated and
posed several logic and circuit challenges. A few early
designs proved highly susceptible to leakage constraints,
so we formed several guidelines on circuit topologies and
sizing to deal with these problems.

Layout Rules and Matching
High-quality layout was a key enabler to not just
functional first silicon, but to HVM. Sensing signals on
the order of 50-100 mV (~5% of vcc) demanded diligent
elimination of all noise, be it from residual precharge,
leakage, gate to drain coupling, wire coupling, or non-
common mode noise caused by mismatched layout or
process variation. Careful, up-front attention to layout
enabled early identification, elimination, or mitigation of
noise sources.

The creation of a custom LVS Layout Rule Checking tool
enabled us to create correct-by-construction layout by
highlighting non-common mode geometries. The LRC
tool helped guarantee that all differential paths were
matched in terms of layout geometries. It analyzed all
pertinent device and metal layers, handling process
patterning and variation issues, enforcing consistent
shielding, and ensuring all signal attackers (cross

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 51

Intel Technology Journal, Volume 8, Issue 1, 2004

AUTHORS’ BIOGRAPHIES capacitance) were common mode. This correct-by-
construction layout was absolutely necessary for high-
volume production and for the creation of a database of
this size. SRAM and analog designs deal with similar
layout matching issues, but on a much smaller scale; e.g.,
SRAMs involve just one arrayed memory cell. LVS
circuitry contained hundreds of thousands of unique
layout geometries and timing paths, and ensuring matched
nlayout alone was a feat never before accomplished on
this scale.

Daniel J. Deleganes is the project manager of the Intel
Pentium 4 processor integer execution cluster described.
Daniel received a B.S.E.E. degree from the University of
Washington in 1988 and an M.S.E.E. degree from Cornell
University in 1989. At Intel he contributed to high-speed
Intel i486 and Intel Pentium processor 2nd level cache
SRAM families, several Pentium processor generations,
and all Pentium 4 processor generations. His e-mail is
daniel.j.deleganes at intel.com.

To date, no tool or methodology holes have led to
functional, yield, or speed issues on silicon. Micah Barany is the microarchitecture manager of the

Pentium 4 processor integer execution cluster described.
Micah received a B.S. degree in Engineering Physics
from the University of California, San Diego in 1989, and
an M.S.E.E. degree from Stanford University in 1993. At
Intel he contributed to Intel i386™ SX and Intel i486 SL
microprocessor families, and several Pentium and
Pentium 4 processor generations. His e-mail is
micah.barany at intel.com.

CONCLUSION
Low-Voltage Swing circuit technology utilizes custom
tools and methodologies to implement random small
signal logic at an unprecedented scale. Our 2x frequency
integer core implementation on Intel's 90nm process
meets the present Pentium® 4 processor product demands.
With process and post silicon optimizations the design
will support increasingly higher frequency processors. Daniel Chow is a memory design lead and integrator in

the Execution Cluster. He joined Intel in 1996 and has
been involved with the methodology definition and
implementation of high speed circuits in all Pentium 4
processor generations. Prior to Intel, he worked at
Motorola as the primary memory designer for the
MC68060. He received his MSEE and BSEE from
Oregon State University. His e-mail is daniel.c.chow at
intel.com.

ACKNOWLEDGMENTS
Innumerable thanks to Matt Morrise, who worked side-
by-side with us to create our custom dynamic simulator
tool. Thanks to Nick Kuhlman for developing and
supporting countless methodology and tool issues.
Edmund Pierzchala enabled our layout design rule
checker tools. Dan Milliron provided our noise analysis
tools and automation tools. Many thanks to our crack
layout design team, for ensuring high-quality, low-noise
layout. Andy Soelburg and Sean Mirkes provided a
comprehensive methodology to interface static and
dynamic timing analyses.

Thomas D. Fletcher directs circuit methodology and
research for new microprocessors in DPG. He has worked
at Intel since 1991 and is a senior principal engineer. He
was the clock unit owner for the Pentium Pro processor
and has steered early circuit design and research for
several generations of the Intel Pentium 4 processor. He is
listed as inventor or co-inventor for 45 Intel patents and
has 5 IEEE publications. His e-mail is tom.fletcher at
intel.com.

REFERENCES
[1] Dan Deleganes, et. al., “Low-voltage-swing logic

circuits for a 7Ghz x86 integer core,” IEEE ISSCC,
February 2004. George L. Geannopoulos co-managed the LVS design

team and is currently managing the PLL team in LTD. He
joined Intel in 1994. His interests include high-speed
circuits, PLL, clock generation and analog design. Prior
to joining Intel, he worked at Bipolar Integrated
Technologies as a design manager designing VLSI ECL
RISC FPUs FPCs and register files. He also worked at
MMI/AMD designing programmable array logic (PALs).
He received a B.S.E.E. degree from the University of

[2] S. Thompson, et. al., “A 90nm technology featuring
50nm strained silicon channel transistors, 7 layers of
Cu interconnects, low k ILD, and 1 um2 SRAM cell,”
2002 IEDM Digest, Dec. 2002, pp. 21-64.

[3] Pereira, R., and Mitchell, J.A., and Solana, J.M.,
“Fully pipelined TSPC barrel shifter for high speed
applications,” IEEE Journal of Solid-State Circuits,
Vol. 30, No. 6, June 1995.

 [4] Stevens, K. and Morrise, M., “Algorithm for finding
vectors to stimulate all paths and arcs through an LVS
gate,” U.S. Patent 6557149.

 i486 and i386 are trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 52

Intel Technology Journal, Volume 8, Issue 1, 2004

Illinois, Champaign Urbana. His e-mail is
george.geannopoulos at intel.com.

Kurt Kreitzer currently manages the LVS design team.
He recently worked to spec and develop quality LVS
design tools and methodologies. Kurt received a B.S.C.E.
degree from Oregon State University in 1994. After
working on the Pentium Pro, he created the modular
SRAM array used throughout the Pentium 4 and other
projects and implemented the Pentium 4 Trace Cache. His
e-mail is kurt.kreitzer at intel.com.

Anant P. Singh is a senior designer on the LVS team.
His recent focus is in mixed signal design where he has
worked to define, implement and productize LVS circuits
in the dual pumped execution core of the next-generation
Pentium 4 processor. He has also designed circuits to
enable the backside bus logic on Pentium® III processors.
Anant has an M.S.E.E. degree. from the University of
Washington and a B.S.E.E. degree from Delhi University.
Prior to Intel, Anant worked in the field of control
systems and automation. His e-mail is anant.p.singh at
intel.com.

Sapumal B. Wijeratne co-designed the LVS
AGU/ALUs. Prior to this work Sapumal held numerous
technical leadership positions including methodology lead
for domino circuits and register files. He is currently co-
managing the next lead processor’s integer execution core
design team in LTD. Sapumal received a B.S.E.E. from
Lafayette College in 1984 and a M.S.E.E. from Purdue
University in 1986. His e-mail is sapumal.wijeratne at
intel.com.

Copyright © Intel Corporation 2004. This publication was
downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

 Pentium is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 53

http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Intel Technology Journal, Volume 8, Issue 1, 2004

THIS PAGE INTENTIONALLY LEFT BLANK

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 54

Copyright © 2004 Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information visit: www.intel.com/sites/corporate/tradmarx.htm

For further information visit:

developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm
http://www.intel.com/sites/corporate/tradmarx.htm

	1_Microarchitecture Web2QAr1 - Marian12forprogramming.pdf
	INTRODUCTION
	NETBURST® MICROARCHITECTURE OVERVIEW
	Execution Trace Cache
	Out-of-Order Core
	Rapid Execution Engine
	Store-to-Load Forwarding Enhancements

	NEW MICROARCHITECTURAL FEATURES AND ENHANCEMENTS
	Front End
	Execution Core
	Memory System

	HYPER-THREADING TECHNOLOGY
	SSE3 INSTRUCTIONS
	Improved x87 Conversions to Integer
	Complex Arithmetic
	Video Encoding
	Graphics
	Thread Synchronization

	PERFORMANCE
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	Foreword webQAforprogramming.pdf
	Foreword

	blank_page.pdf
	INTRODUCTION
	NETBURST® MICROARCHITECTURE OVERVIEW
	Execution Trace Cache
	Out-of-Order Core
	Rapid Execution Engine
	Store-to-Load Forwarding Enhancements

	NEW MICROARCHITECTURAL FEATURES AND ENHANCEMENTS
	Front End
	Execution Core
	Memory System

	HYPER-THREADING TECHNOLOGY
	SSE3 INSTRUCTIONS
	Improved x87 Conversions to Integer
	Complex Arithmetic
	Video Encoding
	Graphics
	Thread Synchronization

	PERFORMANCE
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	2_Compilers Final11ForProg_REV.pdf
	INTRODUCTION
	NEW FEATURES
	New Instructions
	Micro-Architectural Changes

	AUTOMATIC OPTIMIZATION TECHNIQUES
	Vectorization
	Vectorization of Single-Precision Complex Data Types
	Vectorization for SSE3 Idioms

	Interprocedural Alignment Analysis
	Advanced Instruction Selection
	Implementing Complex Operations with SSE3
	Complex Loads and Stores
	Creation of Complex from Real, Imaginary Parts
	Complex Addition and Subtraction
	Complex Conjugate
	Complex Multiplication
	Complex Real and Imaginary Part Extraction
	Partial Constant Propagation and Folding
	Maximal Use of SSE/SSE2/SSE3 Instructions
	Lower Multiply/Shift Latency
	Fisttp Instruction Usage

	SPEC* CPU2000 Performance Results

	PROGRAMMER-GUIDED OPTIMIZATION TECHNIQUES
	SSE3 Intrinsics
	Inline Assembly Using SSE3
	OpenMP-Based Multi-Threading
	Preloading with Aggressive Code Motion
	Auto-Dispatching Fast Lock Routines

	SPEC* OMPM2001 Performance Results

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES
	2_extra.pdf
	INTRODUCTION
	NEW FEATURES
	New Instructions
	Micro-Architectural Changes

	AUTOMATIC OPTIMIZATION TECHNIQUES
	Vectorization
	Vectorization of Single-Precision Complex Data Types
	Vectorization for SSE3 Idioms

	Interprocedural Alignment Analysis
	Advanced Instruction Selection
	Implementing Complex Operations with SSE3
	Complex Loads and Stores
	Creation of Complex from Real, Imaginary Parts
	Complex Addition and Subtraction
	Complex Conjugate
	Complex Multiplication
	Complex Real and Imaginary Part Extraction
	Partial Constant Propagation and Folding
	Maximal Use of SSE/SSE2/SSE3 Instructions
	Lower Multiply/Shift Latency
	Fisttp Instruction Usage

	SPEC* CPU2000 Performance Results

	PROGRAMMER-GUIDED OPTIMIZATION TECHNIQUES
	SSE3 Intrinsics
	Inline Assembly Using SSE3
	OpenMP-Based Multi-Threading
	Preloading with Aggressive Code Motion
	Auto-Dispatching Fast Lock Routines

	SPEC* OMPM2001 Performance Results

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	3_Performance Validation FinalQAr1for prog_REV.pdf
	INTRODUCTION
	PRE-SILICON PERFORMANCE VALIDATION
	Tracing and Workload Collection
	Performance Simulator Development
	RTL Correlation

	PERFORMANCE PROJECTION METHODOLOGY
	POST-SILICON PERFORMANCE VALIDATION
	First Boot and Bring-up Activities
	Performance Parameter Characterization
	Life Cycle of a Performance Sighting
	Interaction with Other Teams
	Tools Used for Post-Silicon Performance Analysis
	The EMON Performance Monitoring Tool
	The Intel VTune™ Performance Analyzer

	Optimal CPU Performance Feature Tuning

	��
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	4_LVS Technology Final1ForProg_REV.pdf
	INTRODUCTION
	��
	LOW-VOLTAGE SWING LOGIC AT INTEL
	LOW-VOLTAGE SWING CIRCUIT ARCHITECTURE
	CLOCKING
	LOW-VOLTAGE SWING USAGE WITHIN THE INTEGER CORE
	Adder Circuit
	Alignment Mux Circuit
	LVS Rotator and Shifter

	TOOLS AND METHODOLOGY
	Dynamic Simulation and Timing Issues
	Merging Static and Dynamic Timing Tools
	Dynamic Noise Analysis of LVS
	Layout Rules and Matching

	CONCLUSION
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	5_Library Architecture Challenges Final2ForProg.pdf
	INTRODUCTION
	CELL-BASED DESIGN FLOW
	CELL LIBRARY DESIGN
	Library Content
	Library Architecture
	Cell Design Methodology
	Library Qualification

	CELL LIBRARY MODELING
	Modeling for Timing
	Modeling for Noise
	Modeling for Reliability
	Modeling for Formal Verification
	Modeling for Place and Route

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES
	5_extra.pdf
	INTRODUCTION
	CELL-BASED DESIGN FLOW
	CELL LIBRARY DESIGN
	Library Content
	Library Architecture
	Cell Design Methodology
	Library Qualification

	CELL LIBRARY MODELING
	Modeling for Timing
	Modeling for Noise
	Modeling for Reliability
	Modeling for Formal Verification
	Modeling for Place and Route

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	6_Full Hold Scan Systems WebForProg.pdf
	INTRODUCTION
	DESIGN AND TEST CHALLENGES
	SCAN SYSTEM ARCHITECTURE
	Scan Functional Unit Features
	Logic Scan Chains
	TAP Controller and Full-Chip Scan Bus

	HIGH-LEVEL OPERATIONS AND MODES
	Snapshot for 1st Si System and LYA Debug
	Snapshot Compression for 1st Si Debug
	On-Die Snapshot Diff for 1st Si Debug
	Signature Mode for Functional Tests in HVM
	Automatic Test Pattern Generation for Various Faults Types in High-Volume Manufacturing
	Toggle Coverage in Burn-in Mode in High-Volume Manufacturing
	Device Initialization in Test Modes in High-Volume Manufacturing

	FULL SCAN DESIGN EXECUTION
	Floor-Planning
	Library Development
	Scan Design Flows and Methodologies
	Scan Selection
	Scan Insertion
	Scan Ordering and Stitching
	Scan Clock Tree Synthesis
	Scan Rules and Checkers

	COST AND BENEFIT ANALYSIS
	Timing/Performance
	Die Area
	Power
	Time to Quality and Factory Savings
	Yield Learning and Quality Improvement

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	Foreword_Renumbered.pdf
	Foreword

	1_Microarchitecture_Renumbered.pdf
	INTRODUCTION
	NETBURST® MICROARCHITECTURE OVERVIEW
	Execution Trace Cache
	Out-of-Order Core
	Rapid Execution Engine
	Store-to-Load Forwarding Enhancements

	NEW MICROARCHITECTURAL FEATURES AND ENHANCEMENTS
	Front End
	Execution Core
	Memory System

	HYPER-THREADING TECHNOLOGY
	SSE3 INSTRUCTIONS
	Improved x87 Conversions to Integer
	Complex Arithmetic
	Video Encoding
	Graphics
	Thread Synchronization

	PERFORMANCE
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	2_Compilers_Renumbered.pdf
	INTRODUCTION
	NEW FEATURES
	New Instructions
	Micro-Architectural Changes

	AUTOMATIC OPTIMIZATION TECHNIQUES
	Vectorization
	Vectorization of Single-Precision Complex Data Types
	Vectorization for SSE3 Idioms

	Interprocedural Alignment Analysis
	Advanced Instruction Selection
	Implementing Complex Operations with SSE3
	Complex Loads and Stores
	Creation of Complex from Real, Imaginary Parts
	Complex Addition and Subtraction
	Complex Conjugate
	Complex Multiplication
	Complex Real and Imaginary Part Extraction
	Partial Constant Propagation and Folding
	Maximal Use of SSE/SSE2/SSE3 Instructions
	Lower Multiply/Shift Latency
	Fisttp Instruction Usage

	SPEC* CPU2000 Performance Results

	PROGRAMMER-GUIDED OPTIMIZATION TECHNIQUES
	SSE3 Intrinsics
	Inline Assembly Using SSE3
	OpenMP-Based Multi-Threading
	Preloading with Aggressive Code Motion
	Auto-Dispatching Fast Lock Routines

	SPEC* OMPM2001 Performance Results

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	3_Performance_Validation_Renumbered.pdf
	INTRODUCTION
	PRE-SILICON PERFORMANCE VALIDATION
	Tracing and Workload Collection
	Performance Simulator Development
	RTL Correlation

	PERFORMANCE PROJECTION METHODOLOGY
	POST-SILICON PERFORMANCE VALIDATION
	First Boot and Bring-up Activities
	Performance Parameter Characterization
	Life Cycle of a Performance Sighting
	Interaction with Other Teams
	Tools Used for Post-Silicon Performance Analysis
	The EMON Performance Monitoring Tool
	The Intel VTune™ Performance Analyzer

	Optimal CPU Performance Feature Tuning

	��
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	4_LVS_Technology_Renumbered.pdf
	INTRODUCTION
	��
	LOW-VOLTAGE SWING LOGIC AT INTEL
	LOW-VOLTAGE SWING CIRCUIT ARCHITECTURE
	CLOCKING
	LOW-VOLTAGE SWING USAGE WITHIN THE INTEGER CORE
	Adder Circuit
	Alignment Mux Circuit
	LVS Rotator and Shifter

	TOOLS AND METHODOLOGY
	Dynamic Simulation and Timing Issues
	Merging Static and Dynamic Timing Tools
	Dynamic Noise Analysis of LVS
	Layout Rules and Matching

	CONCLUSION
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	vol8_art05.pdf
	INTRODUCTION
	CELL-BASED DESIGN FLOW
	CELL LIBRARY DESIGN
	Library Content
	Library Architecture
	Cell Design Methodology
	Library Qualification

	CELL LIBRARY MODELING
	Modeling for Timing
	Modeling for Noise
	Modeling for Reliability
	Modeling for Formal Verification
	Modeling for Place and Route

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES
	5_extra.pdf
	INTRODUCTION
	CELL-BASED DESIGN FLOW
	CELL LIBRARY DESIGN
	Library Content
	Library Architecture
	Cell Design Methodology
	Library Qualification

	CELL LIBRARY MODELING
	Modeling for Timing
	Modeling for Noise
	Modeling for Reliability
	Modeling for Formal Verification
	Modeling for Place and Route

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	6_Full_Hold_Scan_Renumbered.pdf
	INTRODUCTION
	DESIGN AND TEST CHALLENGES
	SCAN SYSTEM ARCHITECTURE
	Scan Functional Unit Features
	Logic Scan Chains
	TAP Controller and Full-Chip Scan Bus

	HIGH-LEVEL OPERATIONS AND MODES
	Snapshot for 1st Si System and LYA Debug
	Snapshot Compression for 1st Si Debug
	On-Die Snapshot Diff for 1st Si Debug
	Signature Mode for Functional Tests in HVM
	Automatic Test Pattern Generation for Various Faults Types in High-Volume Manufacturing
	Toggle Coverage in Burn-in Mode in High-Volume Manufacturing
	Device Initialization in Test Modes in High-Volume Manufacturing

	FULL SCAN DESIGN EXECUTION
	Floor-Planning
	Library Development
	Scan Design Flows and Methodologies
	Scan Selection
	Scan Insertion
	Scan Ordering and Stitching
	Scan Clock Tree Synthesis
	Scan Rules and Checkers

	COST AND BENEFIT ANALYSIS
	Timing/Performance
	Die Area
	Power
	Time to Quality and Factory Savings
	Yield Learning and Quality Improvement

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	Untitled
	Untitled
	 55 55
	6_Full_Hold_Scan_Renumbered.pdf
	INTRODUCTION
	DESIGN AND TEST CHALLENGES
	SCAN SYSTEM ARCHITECTURE
	Scan Functional Unit Features
	Logic Scan Chains
	TAP Controller and Full-Chip Scan Bus

	HIGH-LEVEL OPERATIONS AND MODES
	Snapshot for 1st Si System and LYA Debug
	Snapshot Compression for 1st Si Debug
	On-Die Snapshot Diff for 1st Si Debug
	Signature Mode for Functional Tests in HVM
	Automatic Test Pattern Generation for Various Faults Types in High-Volume Manufacturing
	Toggle Coverage in Burn-in Mode in High-Volume Manufacturing
	Device Initialization in Test Modes in High-Volume Manufacturing

	FULL SCAN DESIGN EXECUTION
	Floor-Planning
	Library Development
	Scan Design Flows and Methodologies
	Scan Selection
	Scan Insertion
	Scan Ordering and Stitching
	Scan Clock Tree Synthesis
	Scan Rules and Checkers

	COST AND BENEFIT ANALYSIS
	Timing/Performance
	Die Area
	Power
	Time to Quality and Factory Savings
	Yield Learning and Quality Improvement

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	6_Full Hold Scan Systems WebForProg.pdf
	INTRODUCTION
	DESIGN AND TEST CHALLENGES
	SCAN SYSTEM ARCHITECTURE
	Scan Functional Unit Features
	Logic Scan Chains
	TAP Controller and Full-Chip Scan Bus

	HIGH-LEVEL OPERATIONS AND MODES
	Snapshot for 1st Si System and LYA Debug
	Snapshot Compression for 1st Si Debug
	On-Die Snapshot Diff for 1st Si Debug
	Signature Mode for Functional Tests in HVM
	Automatic Test Pattern Generation for Various Faults Types in High-Volume Manufacturing
	Toggle Coverage in Burn-in Mode in High-Volume Manufacturing
	Device Initialization in Test Modes in High-Volume Manufacturing

	FULL SCAN DESIGN EXECUTION
	Floor-Planning
	Library Development
	Scan Design Flows and Methodologies
	Scan Selection
	Scan Insertion
	Scan Ordering and Stitching
	Scan Clock Tree Synthesis
	Scan Rules and Checkers

	COST AND BENEFIT ANALYSIS
	Timing/Performance
	Die Area
	Power
	Time to Quality and Factory Savings
	Yield Learning and Quality Improvement

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	vol8_art04_cover.pdf
	INTRODUCTION
	��
	LOW-VOLTAGE SWING LOGIC AT INTEL
	LOW-VOLTAGE SWING CIRCUIT ARCHITECTURE
	CLOCKING
	LOW-VOLTAGE SWING USAGE WITHIN THE INTEGER CORE
	Adder Circuit
	Alignment Mux Circuit
	LVS Rotator and Shifter

	TOOLS AND METHODOLOGY
	Dynamic Simulation and Timing Issues
	Merging Static and Dynamic Timing Tools
	Dynamic Noise Analysis of LVS
	Layout Rules and Matching

	CONCLUSION
	REFERENCES
	AUTHORS’ BIOGRAPHIES

