3. Exercise

3.1 Intrinsic Carrier Density

The intrinsic carrier density in silicon at room temperature is $1.01 \times 10^{10} \,\mathrm{cm}^{-3}$ ('latest values'). Low field mobilities of electrons and holes are ≈ 1400 and $\approx 480 \,\mathrm{cm}^2/(Vs)$, respectively.

- 1. How many free electrons / holes are present per cubic micrometer?
- 2. What would be the current flowing through a (ohmically connected) pixel with an area of $200 \times 200 \,\mu\text{m}^2$ in a 300 μm thick detector when applying 100 V ?
- 3. How many electrons/holes are that per nanosecond?

3.2 Thickness of Depletion Region

Consider an *n*-doped wafer of $300 \,\mu\text{m}$ thickness with a bulk resistivity of $2 \,\text{k}\Omega \,\text{cm}$. The top surface is p-implanted with 10^{15} atoms per cm³.

- 1. What is the wafer doping in atoms per cm^3 and atoms per μm^3 ?
- 2. What is the build-in voltage?
- 3. What additional voltage V_{depl} is required to deplete the wafer?
- 4. What is the field at the pn-junction and at the backside just at depletion?
- 5. How does the field at the backside increase with extra Over-voltage when the bias voltage is $V_{depl} + V_{over}$?

3.3 Linear Depletion

For constant doping density, the depletion region in a diode grows with the square root of the (reverse) bias voltage. In this exercise you should find a (non-constant) doping profile such that the thickness of the depletion region T grows *linearly* with the applied voltage, i.e. such that $T[V] = k \cdot V$.

- 1. We assume that the junction is at x = 0. To the left, we have 'infinite' p-doping.
- 2. To the right, we assume a n-doping density following a power law

$$n(x) = Ax^{\alpha}.$$

- 3. Assume that the depletion region extends to T > 0, i.e. that the donors are depleted and a space charge corresponding to donor density exists.
- 4. Calculate E(x) from Gauß's law (by integrating over space charge).
- 5. From E(x), calculate V(x), and in particular V(T).
- 6. Now find T(V).
- 7. What exponent α is required for $T \propto V$?
- 8. Verify also that for $T \propto \sqrt{V}$, you find constant doping.