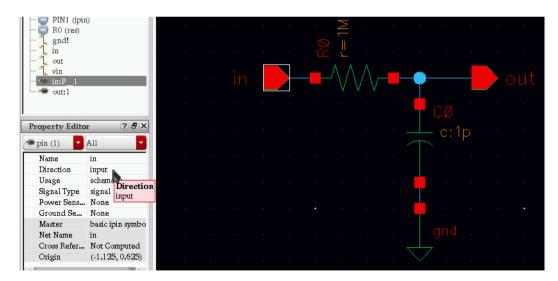


Schematics

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

What are Symbols ?

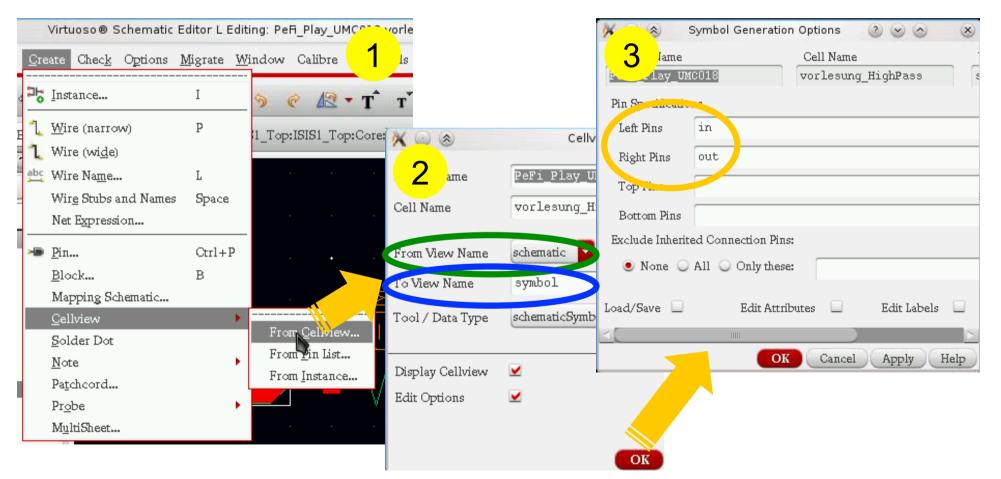

- Very often, a circuit (schematic) can be re-used.
- Instead of copying everything, we can 'include' the schematic into another schematic
- In order to identify the nets, we need a symbol
 - This is a new *view* type

- View			
View 🔿	Lock	Size	
layout			17k
schematic			30k
symbol			23k

- The nets which are passed to the outside world must be connected to *pins* in the schematic.
 - For each pin in the schematic we also need a pin in the symbol.
- Pins must have the same name as the connected net
- They can be Input / Output / inputOutput (see later)

Preparing the Schematic

- The easiest way to create a symbol starts from a schematic
- Using Create → Pin (Ctrl-P or button →), create pins for all signals that should be visible 'outside'
 - outputs are signals that will drive to other cells
 - inputs only receive signals. They must be connected later
 - InputOutput are most general. Only use if you have to!

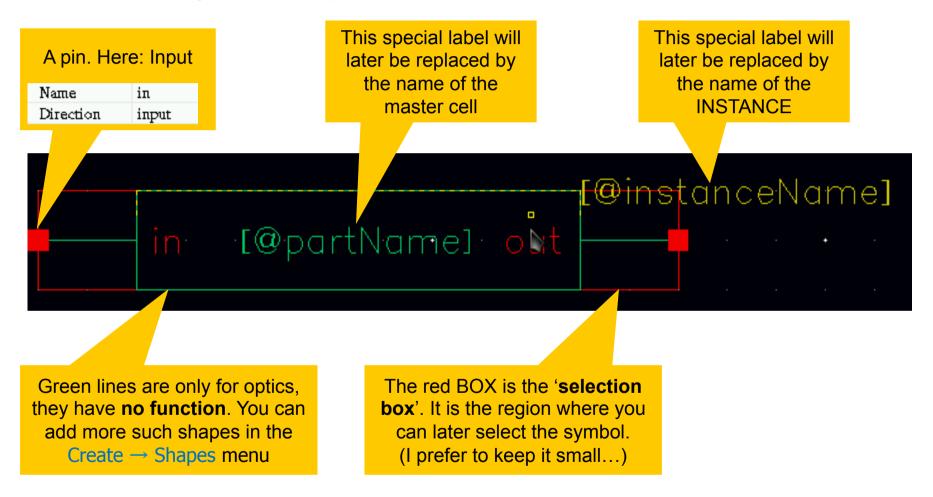


- A pin labels the net, i.e. a further label is not required
- Better remove all symbols used for simulation (sources..)

Creating a Symbol from the Schematic

1. Select Create → Cellview → From Cellview

2. Check that 'From View' is *schematic* and 'To view' is *symbol*3. Press ok. In the next window, select the pin locations



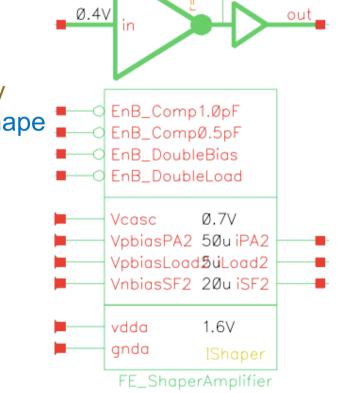
VLSI Design: Schematics

Editing the Symbol

A symbol template is created:

• You can set the origin under $Edit \rightarrow Origin$

Make Nice Symbols!

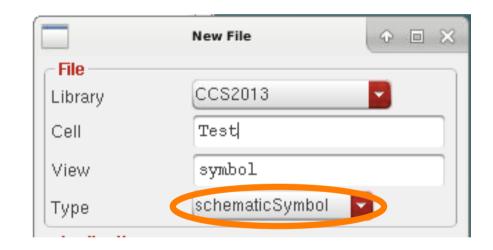

- Your schematics get more readable if the symbols are 'nice':
 - Power (if present at pins) may be grouped at the bottom
 - Group bias signals, use 'good' names
 - Inputs are left / outputs are right
 - Digital signals are grouped
 - Active Low signals have a bullet
 - Clocks have with a triangle
 - Add a little drawing of the functionality Create→Note→Shape or Create→Shape

@inst🚄

close vdda

[@partName]

- Add text: Create→Note→Text
- You may delete trivial labels



203

paou

Creating a Symbol from Scratch

 You can also create an (empty) new symbol directly from the library browser with File → New → Cell View... with view type schematicSymbol

• You must then place all pins, boxes, labels, .. by hand.

Editing a Symbol

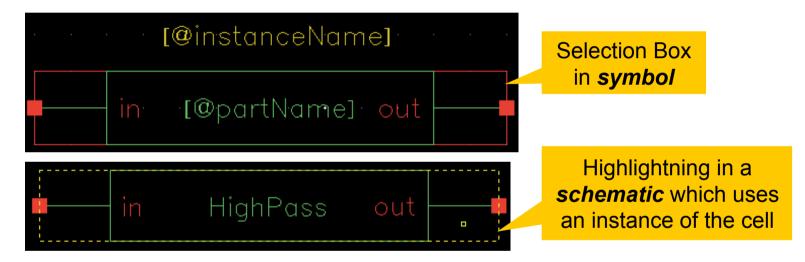
- When you (later) add new pins to the schematic, you also have to add them to the symbol.
 - Make sure name and type are the same!
 - Best copy other pins and rename them

- You can move, stretch, ... as usual
- You can change the size or 'justification' of the labels

Apply To	only current 🧧 sy	mbol label 🧧	
	Attachment		
Label	[@partName]		value 📘
Choice	logical label		
Height	0.0625	Туре	NLPLabel 🗧
Font	stick	Drafting	
Justification 🧲	centerCenter	Overbar	

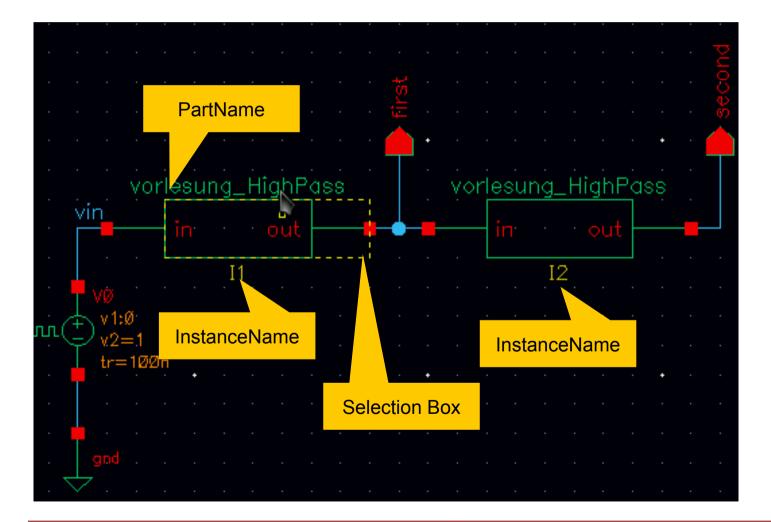
Two special labels are created automatically:

[@instanceName]


- [@instanceName] will display surprise! the name of the instance (of this symbol) that you place in another schematic, i.e. **I2** or, better, **lamp1** or so
- [@partName] displays the (library) name of the cell,
 - i.e. vorlesung_HighPass or NAND2

Place them somehow nicely (size / alignment / position)

The Selection Box


- When created automatically, a (red) Selection Box appears
- It marks the area which will be used to 'highlight' / 'select' the instance (in the next hierarchy level):

- The Selection Box can be moved / resized
- If lost (or in manually created cells), it can be created by Create
 → Selection Box
- You cannot route over the Selection $\text{Box} \rightarrow \text{keep}$ it small
- If no Selection Box is defined, the maximal symbol size is used.

Using the symbol

 In a schematic, you can add your symbol now in the same way as any other instance

Inputs / Outputs / InputsOutputs

After 'Check & Save', warnings may pop up in the CIW:

Unconnected output vorlesung_HighPass → Warning 'floating output' If this missing connection is vorlesung_HighPass intended, connect the 'noConn' symbol from library 'basic' **Unconnected** inputs \rightarrow Warning 'floating input' 13 vorlesung_HighPass vin Shorted output pins \rightarrow Warning 'shorted output'

- InputOutputs can be connected arbitrarily. Use with caution!
- All schematics should be 'clean', i.e. issue no warnings!

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

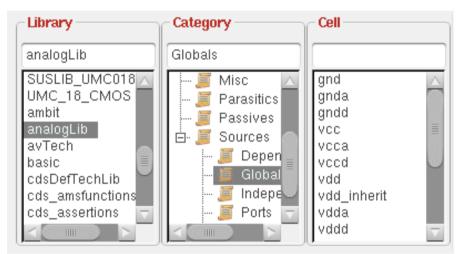
TRAVELING THE HIERARCHY

Traveling in the Hierarchy

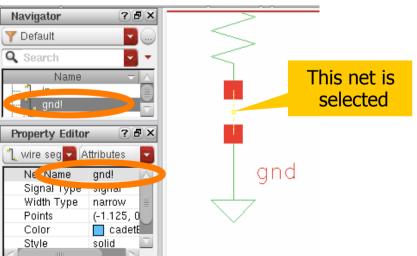
- Assume you are in Schematic A which contains an Instance of PartType B
- If you want to modify (the symbol or schematic of) B, you normally have to open that cell from the library browser
- You can better *'dive into'* B by
 - Selecting the instance
 - Edit → Hierarchy → Descend Edit (Shift-X)
 - Select the view
 - Select if you want a new window / new tab / use existing tab
- You then end up in symbol / schematic of B
- When done, return back 'up' with Edit → Hierarchy → Return (Shift-B)
- You can also Descend for Read Only (Ctrl-X) or Edit in Place (x). This Edits B but shows A ! Powerful but dangerous!

< ◎ ⊗	Descend	00	\odot \otimes
View	schematic		► Β *λλ --
Open for	🖲 edit 🔾 read 🔾 auto		*
Open in	🔾 new tab 🖲 current tab 🔾 :	new window	
		K Cance	l Help

GLOBAL NETS

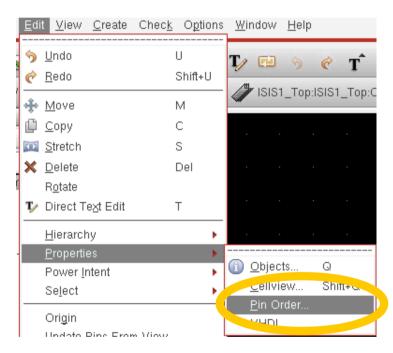

Global Nets

- A net is normally only known in the corresponding schematic
 - Connecting nets between schematics requires pins
- This can be tedious for signals which are used very often
 - analogue / digital power / ground
 - substrate potential
- You can use global nets, known everywhere
 - They are identified by an **exclamation** mark: xxx!
- Common global nets are
 - gnd! or sub! chip substrate
 - gndd! and vddd! digital ground /supply
 - gnda! and vdda! analogue ground / supply
- Handle them with care, because it is hard to track where they are used...



There are several global 'symbols' in analogLib

• Under Sources \rightarrow Global


- They connect a net automatically to the corresponding global net
- Therefore: Connecting to symbol
 'gnd' is the same as labelling a net with 'gnd!'

- If can happen that the internal order of pins gets messed up
 - You get a warning at Check & Save
 - This happens if you copy pins from other cells, delete pins,..
- To restore correct order, use
 Edit → Properties → Pin Order
- Best copy the Pin Order from another view:

 In rare cases, you have to regenerate (for instance) the symbol. (There is a step which allows you to just 'repair' the wrong stuff so that you nice drawing is not affected)

BUSSES AND ADVANCED NET NAMING

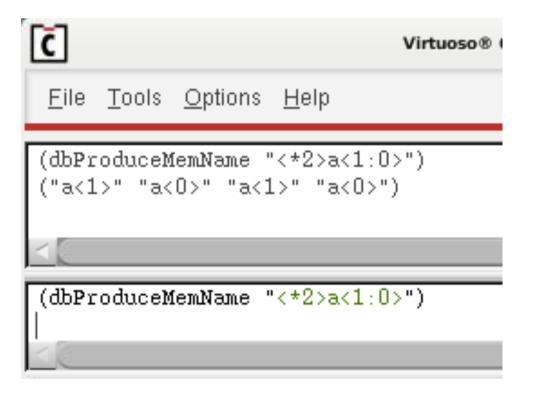
A single 'wire' on the schematic can represent several nets, i.e. a 'bus' or bundle of nets.

When a wire has multiple nets assigned: Imagine the nets stacked onto each other in the order they are listed

Examples:

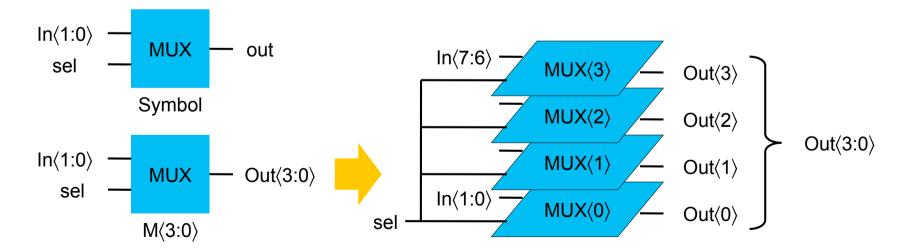
• Bus

- simple wire in
- Multiple wires a,b separated by comma
- $d\langle 4:0\rangle$ 5 signals: $d\langle 4\rangle,...,d\langle 0\rangle$ • Bus
 - x(1:5) different index order: x(1),...,x(5)
- Repetition $\langle *3\rangle a, \langle *2\rangle b$ this is equivalent to a,a,a,b,b
- Skip indices $d\langle 7:3:2\rangle = d\langle 7\rangle, d\langle 5\rangle, d\langle 3\rangle$
- Index list


 $d\langle 1:0,3, \langle *2\rangle \rangle = d\langle 1\rangle, d\langle 0\rangle, d\langle 3\rangle, d\langle 5\rangle, d\langle 5\rangle$

This works for labels and for pins (but use only busses!)

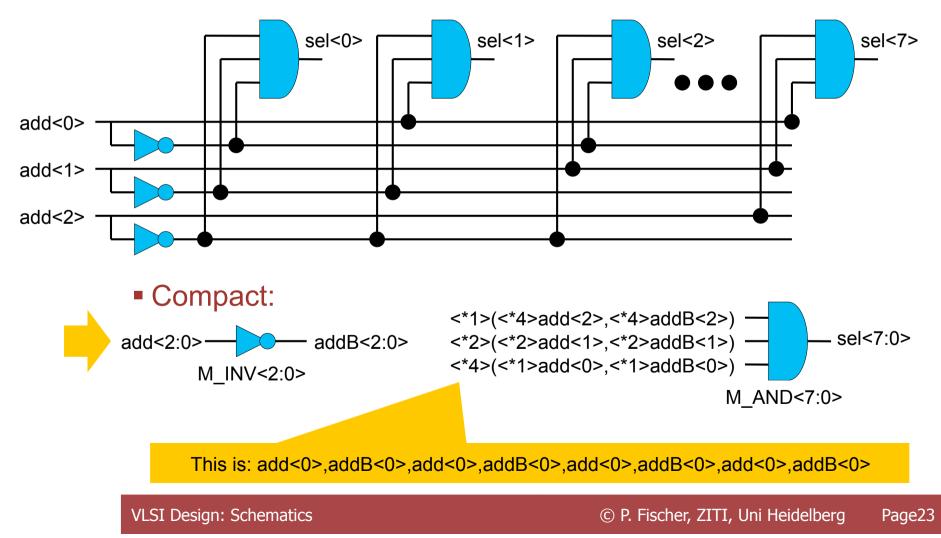
Advanced Net Names


 If you are not certain how a complicated net name expands: Type the expression in the CIW (Command Interpreter Window) using

(dbProduceMemName "expression")

Multiple Symbols (Important!)

- Instances can be indexed as well:
 - An instance with name M(3:0) contains 4 elements M(3)...M(0)
 - They are (again) lying 'on top of each other' (in the order given)
- The instance pins are stacked on top of each other
 - A single pin of N instances becomes a bus which is N nets wide
 - A pin with 2 nets (in(1:0)) becomes 2N nets wide etc.
 - Connected nets must be have exact length OR be a single wire (see net 'sel' below), connecting all nets

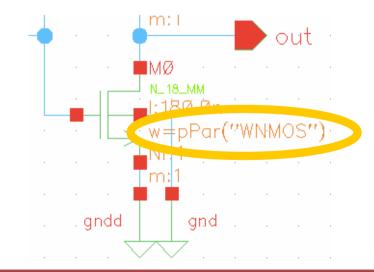


Multiple Symbols: 2nd example

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

Here is a 3 Bit address decoder which activates one of 8 output signals sel(7:0) as a function of 3 address inputs add(2:0):

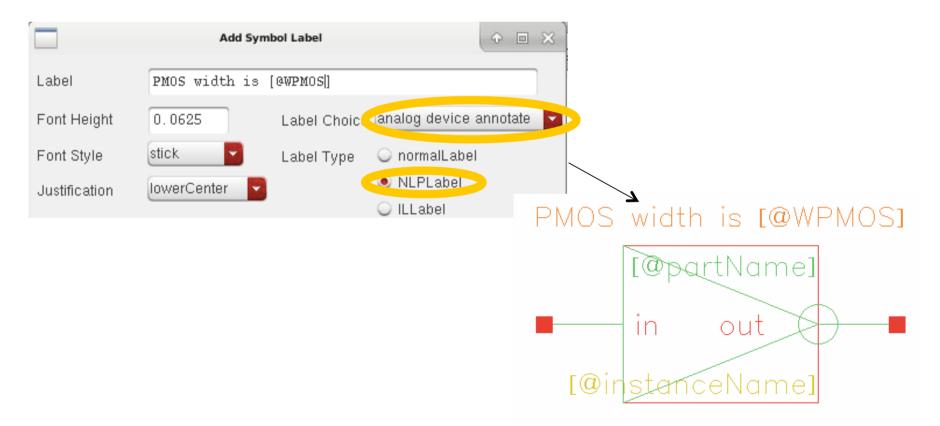

SYMBOLS WITH PARAMETERS

Parameterized Symbols (Step 1/3)

- It occurs that you need very similar schematics where only few parameters are changed (often transistor sizes)
 - Example: Inverter with different PMOS widths
 - Unfortunately, parameters cannot be used everywhere...
- Instead of creating multiple cells, you can create a view with a PARAMETER:

1. In the schematic:

introduce the parameter with **pPar("pname")** (capital P!)



Parameterized Symbols (Step 2/3)

2. In the symbol: Add a label

- Label Choice: analog device annotate
- Label Type: NLPLabel

Add any text, referring to the parameter as [@pname]

Parameterized Symbols (Step 3/3)

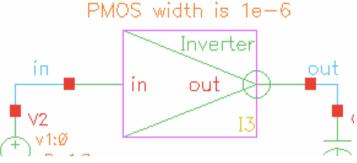
- 3. Cadence still needs to know about the new parameter:
 - In CIW→Tools→CDF→Edit
 - Choose Scope: Cell
 - Choose CDFLayer: Base
 - Select Cell

- CDF
 Edit...

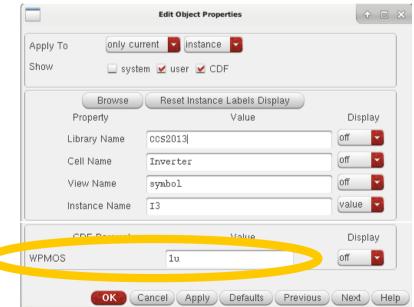
 SKILL IDE...
 Edit...

 SKILL Development...
 Delete...

 Conversion Tool Box...
 Scale Factors...


 E touify...
 E touify...

 E touis C tions Help
 INFO (SCH-1171): Cross View Check completed with no er
- Add your *pname* in the form
 - Type: String
 - Set prompt string & default value
 - Store Default: no (=default)
 - Parse as CEL: yes
 - Parse as Number: yes
 - Editable Condition: t (needed ?)
 - Units: don't use (=default)


Parameterized Symbols: Instantiation

- The Symbol now shows your text + value
 - You may need to delete and re-instantiate the symbol..

You can change the parameter

in the instance properties

INHERITED NETS

Inherited Nets

- It is possible to over-write nets in schematics (mostly supplies) from a higher hierarchy level.
- This 'inherited nets' approach is not further described here...

FEATURES OF THE SCHEMATIC EDITOR

Some Features

- The additional display of net names at the pins of transistors is often confusing.
 - You can turn this off under View \rightarrow Hide Terminal Labels
- If you want to see all places where a net in one schematic connects:
 - Enable Highlighting under View → Enable Dynamic Highlighting
- If you want to follow a signal through the hierarchy:
 - Highlight the net under Create \rightarrow Probe \rightarrow Add Net