RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Exercise 2: Designing with (Schematic) Hierarchy

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

© P. Fischer, ZITI, Uni Heidelberg Page1

Implementation

- 1. You can create a *schematic* and a *symbol* view in the same *cell* independently.
 - When you save either cell, the number/names/types of the pins are checked against the other cell. Create Check Options Migrate Window Calibre
- 2. You can also create the 'second' view *automatically*: Create → Cellview → From CellView
- Two further forms are displayed..

[@partName] out

- This works in both directions
 - Symbol \rightarrow Schematic
 - Schematic \rightarrow Symbol

© P. Fischer, ZITI, Uni Heidelberg Page2

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

EXERCISE A: RING OSCILLATOR

A Ring Oscillator consists of a chain of N inverters connected to a ring:

- When N is odd (ungerade), the circuit oscillates
 - Understand why
 - What happens if N is even?
- To start in a well defined state, and to turn on/off the oscillator, we add a NAND2 gate:

Schematics / Symbols

- Implement such an oscillator
 - Use global power nets vddd! and gndd! and substrate gnd!
- Create 3 schematics + symbols:
 - Inverter
 - use pins in, out
 - use an NMOS with W/L = 0.5u/0.18u and a 3 times wider PMOS
 - Nand2
 - use pins in1, in2, out
 - use MOS such that the drive strength is roughly as for the inverter
 - Oscillator
 - use pins run, out
 - use (for instance) 10 inverters
 - use a compact notation, i.e. do NOT draw 10 inverters

Simulation

- Create another schematic SIM_RingOsc for simulation
- Instantiate
 - the oscillator
 - the power supply source (of 1.8 V)
 - a vpulse source to turn on the oscillator after 5 ns.
- Connect gnd! and gndd! with a 0V voltage source
- Does it oscillate ? What is the oscillation frequency ?
- So follow for the delay of one inverter (neglecting the NAND2)
- Change your circuit to N=50 or so and repeat.
- Such circuits are used in practice to easily measure the very small delay of an inverter or other cells