Exercise: SKILL

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

Exercise A ('warmup'):

- Calculate $1+1$
- What is Sinus (1)? ? (radian)
- Find a way to get π
- Define two variables x and y, set them to 2 and 3 and multiply them
- Let p be a list of two float values
- Get the first and second element of the list p
- Add the first and second element directly (in one command)
- Define a function (Double ..) which outputs the double of a (float) argument

Exercise B: Area of a Rectangle

- Calculate the area of a rectangle (a list of two points)
- Define a function area which does this

For
-(setq A list(1:2 3:4))
your function

- (area A)
should return
-4

Exercise C: Sum of Elements

- Define a function sumup which calculates the sum of the elements of a list
- Assume all elements are numbers
- Write 2 different versions at least:
- Using foreach
- Explicitly picking the nth element (i.e. using an index)
- You could try two more versions:
- Stepping through the list with car / cdr
- A recursive version

Exercise D: Objects in a Layout

- Create a new layout. Create a rectangle on metal1 and a path on poly by hand.
- From the CIW store the ID of the view in myID
- What is myID~>shapes ?
- Examine the two objects
- In the CIW: Assign a new value to the bounding box of the rectangle and check what happens in the open cell view.
- Create a new rectangle using the command from the lecture
- Search in the manual how to place a circle or a path.

Exercise E: Making a Binned Circle

- Write a routine to create a circle (quadrant) from man small rectangular stripes
- Fix the layer to
'("ME2" "drawing")
- Fix the origin at $(0,0)$
- Input parameters are
- the outer radius
- the (x) step size of the strips
- It is sufficient to generate a quadrant, i.e. We define a procedure 'quadrant' and call (quadrant radius step)

- For a start assume that radius is an integer multiple of step
- Make sure the y-coordinates are on 'some' grid, for instance multiples of step

Exercise E: Maths

- The formula for the 'ideal' area of a slice is obtained by integration:

```
In[l]= f[R_, x_] = \sqrt{}{\mp@subsup{R}{}{2}-\mp@subsup{\mathbf{x}}{}{2}}\mp@subsup{}{}{\prime}
Out(t)= = 在每-\mp@subsup{x}{}{2}
ln[14]:= Plot[f[1, x],{x, -1, 1}, AspectRatio }->\mathbf{1/2,Frame }->\mathrm{ , True, Filling }->\mathrm{ Axis ]
```


$\ln [11]$: $=$ \$Assumptions $=\mathbf{R}>0 \& \& x 1>-R \& \& x 1<R \& \& x 2>-R \& \& x 2<R \& \& x 1<x 2 ;$
$\ln [12]=$ Integrate $[f[R, x],\{x, x 1, x 2\}]$
Jut $[12]=\frac{1}{2}\left(-\mathrm{x} 1 \sqrt{R^{2}-\mathrm{x} 1^{2}}+\mathrm{x} 2 \sqrt{R^{2}-\mathrm{x} 2^{2}}+\mathrm{R}^{2}\left(-\operatorname{ArcTan}\left[\frac{\mathrm{x} 1}{\sqrt{R^{2}-\mathrm{x} 1^{2}}}\right]+\operatorname{ArcTan}\left[\frac{\mathrm{x} 2}{\sqrt{R^{2}-\mathrm{x} 2^{2}}}\right]\right)\right)$

Exercise F: Define a Key ShortCut

- Check in your .cdsinit file how the shortcuts for changing the grid are defined
- Change the message that is printed
- Add another key for a new grid
- Define a function which places a rectangle ($1 \times 1 \mathrm{um}^{2}$) at the cursor position
- You get the cursor position with
(hiGetPoint (hiGetCurrentWindow))
- Associate the function to a bind key

Exercise G:

- Create a PCELL which generates the quarter circle from exercise E

