Numerical solution of space charge density and field in arbitrarily doped diode structures

Peter Fischer, ZITI, Heidelberg University

January 9, 2017

1 Device description

We consider a silicon structure with a thickness D. The doping is a function of the depth x in the device, with $0 \leq x \leq D$. We can merge the donor doping $N_{D}(x)$ and the acceptor doping $N_{A}(x)$ into an effective doping

$$
\begin{equation*}
N(x):=N_{D}(x)-N_{A}(x), \tag{1}
\end{equation*}
$$

because opposite dopings compensate each other. $N(x)$ shall be positive for n-doped and negative for p-doped regions, respectively. The built-in potential $V_{b i}$ of this structure is given by the dopings at the surfaces to

$$
\begin{equation*}
V_{b i}=U_{T} \ln \left(-\frac{N(0)}{n_{i}} \frac{N(D)}{n_{i}}\right) \tag{2}
\end{equation*}
$$

where n_{i} is the intrinsic carrier concentration and $U_{T}=k T / q$ is the thermal voltage ${ }^{1}$.
In the following, we will calculate the electrostatic potential $\Phi(x)$ (and also the field $E(x))$ numerically for an arbitrary doping profile $N(x)$. We will first write down a (nearly) exact differential equation for $\Phi(x)$, then define an iterative procedure to successively improve an initial guess and carry out the procedure numerically by discretization of the space coordinate.

2 Differential equation

The position dependent density of mobile electrons/holes shall be given by $n(x)$ and $p(x)$. The electrostatic potential $\Phi(x)$ follows from the one-dimensional Poisson equation

$$
\begin{equation*}
\frac{d^{2} \Phi(x)}{d x^{2}}=\Phi^{\prime \prime}(x)=-\frac{\rho(x)}{\epsilon \epsilon_{0}} \tag{3}
\end{equation*}
$$

where ϵ is the semiconductor dielectric constant, ϵ_{0} is the permittivity of free space and $\rho(x)$ is the charge density given by

$$
\begin{equation*}
\rho(x)=q[p(x)-n(x)+N(x)] . \tag{4}
\end{equation*}
$$

In this 'depletion approximation' we have assumed that all doping atoms are activated (donors have lost their electron, acceptors have catched an electron), which is basically fulfilled in the depletion regions, which we are interested in. n-doped regions are positively charged when depleted, so that we need a ' + ' sign for $N(x)$ in (4). In equilibrium, electron and hole densities are functions of the potential only ${ }^{2}$:

$$
\begin{align*}
& p(x)=n_{i} \exp \left(-\frac{\Phi(x)}{U_{T}}\right) \tag{5}\\
& n(x)=n_{i} \exp \left(+\frac{\Phi(x)}{U_{T}}\right), \tag{6}
\end{align*}
$$

[^0]where the potential $\Phi(x)$ is relative to the Fermi potential Φ_{F} which we arbitrarily fix to zero and $U_{T}=k T / q$ is the thermal voltage. Note that these expressions fulfill the mass action law $n(x) \cdot p(x)=$ $n_{i}{ }^{2}$. The two expressions can be injected into (4) so that we get
\[

$$
\begin{equation*}
\rho(x)=q N(x)-2 q n_{i} \sinh \frac{\Phi(x)}{U_{T}} . \tag{7}
\end{equation*}
$$

\]

The Poisson equation (3) becomes

$$
\begin{equation*}
\Phi^{\prime \prime}(x)=D(x)+C \sinh \frac{\Phi(x)}{U_{T}} \tag{8}
\end{equation*}
$$

with the known quantities

$$
\begin{align*}
D(x) & :=-\frac{q N(x)}{\epsilon \epsilon_{0}} \tag{9}\\
C & :=\frac{2 q n_{i}}{\epsilon \epsilon_{0}} . \tag{10}
\end{align*}
$$

The task is therefore to solve (8) for $\Phi(x)$ for a $D(x)$ given by the doping profile.

3 Iterative Solution (Newton - Raphson Method)

We use an iterative procedure to solve (8). In the i-th iteration, we assume that the exact solution $\Phi(x)$ is given by an approximative solution $\Phi^{i}(x)$ and a (small) error term $\Lambda^{i}(x)$, i.e.

$$
\begin{equation*}
\Phi(x)=\Phi^{i}(x)+\Lambda^{i}(x), \quad \text { with } \quad i=0 \ldots \infty . \tag{11}
\end{equation*}
$$

In each iteration, we determine an approximative solution $\lambda^{i}(x)$ for $\Lambda^{i}(x)$ and then use this result to get a better solution $\Phi^{i+1}(x)=\Phi^{i}(x)+\lambda^{i}(x)$. In the following, we omit the (upper) iteration index i for better readability. Injecting (11) into (8) leads to

$$
\begin{equation*}
\Phi^{\prime \prime}(x)+\lambda^{\prime \prime}(x)=D(x)+C \sinh \left(\frac{\Phi(x)}{U_{T}}+\frac{\lambda(x)}{U_{T}}\right) \tag{12}
\end{equation*}
$$

On the right hand side, we exploit that λ is small compared to Φ so that we can use the first order Taylor approximation $\sinh (x+\epsilon) \approx \sinh (x)+\epsilon \cdot \cosh (x)$. Equation 12 becomes

$$
\Phi^{\prime \prime}(x)+\lambda^{\prime \prime}(x) \approx D(x)+C \sinh \frac{\Phi(x)}{U_{T}}+\frac{C}{U_{T}} \lambda(x) \cosh \frac{\Phi(x)}{U_{T}} .
$$

Bringing all λ-terms to the left leads to

$$
\frac{C}{U_{T}} \cosh \frac{\Phi(x)}{U_{T}} \tilde{\lambda}(x)-\lambda^{\prime \prime}(x)=\Phi^{\prime \prime}(x)-D(x)-C \sinh \frac{\Phi(x)}{U_{T}}
$$

or

$$
\begin{equation*}
A(x) \lambda(x)-\lambda^{\prime \prime}(x)=B(x) . \tag{13}
\end{equation*}
$$

with

$$
\begin{align*}
A(x) & =\frac{C}{U_{T}} \cosh \frac{\Phi(x)}{U_{T}} \tag{14}\\
B(x) & =\Phi^{\prime \prime}(x)-D(x)-C \sinh \frac{\Phi(x)}{U_{T}} \tag{15}
\end{align*}
$$

Equation 13 is linear in λ and therefore much simpler than the initial equation (8). The values of $A(x)$ and $B(x)$ can be calculated from the doping profile and the approximative solution of the i-th iteration $\Phi^{(i)}(x)$. Note that $B(x)$ is the difference of both sides in (8). It vanishes when $\Phi(x)$ is the exact solution, so that $\lambda(x)$ becomes zero.

4 Discretization

We must solve (13) for $\lambda(x)$ to get an improved solution. This can be done numerically by discretization of all functions. We subdivide $x=0 \ldots D$ into N equal intervals of length $\Delta:=D / N$. The j-th grid point is at $x_{j}=j \cdot \Delta$, the grid points at the boundaries $x_{0}=0$ and $x_{N}=D$ having indices 0 and N, respectively. All functions are now evaluated at discrete positions only, i.e. we use now a vector f_{j} instead of a function $f(x)$. The second derivative of λ at an inner grid point j is

$$
\lambda_{j}^{\prime \prime}=\frac{\lambda_{j+1}+\lambda_{j-1}-2 \lambda_{j}}{\Delta^{2}} \quad \text { for } \quad j=1 \ldots N-1
$$

Using this, (13) becomes

$$
\begin{equation*}
A_{j} \lambda_{j}+\alpha\left(\lambda_{j+1}+\lambda_{j-1}-2 \lambda_{j}\right)=B_{j} \quad \text { for } \quad j=1 \ldots N-1 \tag{16}
\end{equation*}
$$

with

$$
\alpha:=-\frac{1}{\Delta^{2}}=-\frac{N^{2}}{D^{2}}
$$

For now, we fix the voltage at the diode to $V_{b i}$ (i.e. we apply no additional bias voltage). This fixes the values of Φ_{0} and Φ_{N} and we have $\lambda_{0}=\lambda_{N}=0$. We therefore only need to calculate indices $j=1 \ldots N-1$. Equation 16 can be rearranged as

$$
\alpha \lambda_{j-1}+\left(A_{j}-2 \alpha\right) \lambda_{j}+\alpha \lambda_{j+1}=B_{j}
$$

which can be written in matrix form as

$$
\left(\begin{array}{ccccc}
A_{1}-2 \alpha & \alpha & 0 & \cdots & 0 \\
\alpha & A_{2}-2 \alpha & \alpha & 0 & \cdots \\
0 & \alpha & A_{3}-2 \alpha & \alpha & \cdots \\
\vdots & 0 & \alpha & \ddots & \alpha \\
0 & \cdots & \cdots & \alpha & A_{N-1}-2 \alpha
\end{array}\right) \cdot\left(\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3} \\
\cdots \\
\lambda_{N-1}
\end{array}\right)=\left(\begin{array}{c}
B_{1} \\
B_{2} \\
B_{3} \\
\cdots \\
B_{N-1}
\end{array}\right)
$$

or

$$
\left(\begin{array}{ccccc}
X_{1} & \alpha & 0 & \cdots & 0 \tag{17}\\
\alpha & X_{2} & \alpha & 0 & \cdots \\
0 & \alpha & X_{3} & \alpha & \cdots \\
\vdots & 0 & \alpha & \ddots & \alpha \\
0 & \cdots & \cdots & \alpha & X_{N-1}
\end{array}\right) \cdot \vec{\lambda}=\left(\begin{array}{c}
B_{1} \\
B_{2} \\
B_{3} \\
\cdots \\
B_{N-1}
\end{array}\right)
$$

with

$$
\begin{equation*}
X_{i}:=A_{i}-2 \alpha=\frac{C}{U_{T}} \cosh \frac{\Phi_{i}}{U_{T}}-2 \alpha \tag{18}
\end{equation*}
$$

This equation is of a simple form as only the first off-diagonal elements are non-zero. It can be solved by Gauss elimination. We first subtract an α / X_{1}-fold multiple of the first row from the second row in order to eliminate the α in the first column. This gives

$$
\left(\begin{array}{ccccc}
X_{1} & \alpha & 0 & \cdots & 0 \tag{19}\\
\mathbf{0} & X_{2}-\frac{\alpha^{2}}{X_{1}} & \alpha & 0 & \cdots \\
0 & \alpha & X_{3} & \alpha & \cdots \\
\vdots & 0 & \alpha & \ddots & \alpha \\
0 & \cdots & \cdots & \alpha & X_{N-1}
\end{array}\right) \cdot \vec{\lambda}=\left(\begin{array}{c}
B_{1} \\
B_{2}-\alpha \frac{B_{1}}{X_{1}} \\
B_{3} \\
\cdots \\
B_{N-1}
\end{array}\right)
$$

In the next step, we subtract a $\frac{\alpha}{\left(X_{2}-\alpha^{2} / X_{1}\right)}$-fold multiple of the second row from the third row and get

$$
\left(\begin{array}{ccccc}
X_{1} & \alpha & 0 & \cdots & 0 \tag{20}\\
0 & X_{2}-\frac{\alpha^{2}}{X_{1}} & \alpha & 0 & \cdots \\
0 & \mathbf{0} & X_{3}-\frac{\alpha^{2}}{X_{2}-\frac{\alpha^{2}}{X_{1}}} & \alpha & \cdots \\
\vdots & 0 & \alpha & \ddots & \alpha \\
0 & \cdots & \cdots & \alpha & X_{N-1}
\end{array}\right) \cdot \vec{\lambda}=\left(\begin{array}{c}
B_{1} \\
B_{2}-\alpha \frac{B_{1}}{X_{1}} \\
B_{3}-\alpha \frac{B_{2}-\alpha \frac{B_{1}}{X_{1}}}{X_{2}-\frac{\alpha^{2}}{X_{1}}} \\
\cdots \\
B_{N-1}
\end{array}\right)
$$

We proceed with the following rows until all α s below the diagonal are eliminated. We then eliminate the remaining α s above the diagonal in a similar way, starting at the lowermost row. The resulting matrix has only diagonal elements so that the λs can be extracted directly.

5 Applying an External Reverse Bias Voltage

If we apply an external voltage V (in reverse bias), the structure is no longer in equilibrium and the Fermi level is not constant any more: the levels at the p - and n-side are offset by $q \cdot V$. Electron and hole densities can be determined by using effective Fermi energies, one for each carrier type. Figure 1 shows the band structure of a $p n$-junction with reverse bias voltage V. Equations (5) and (6) must be replaced by

$$
\begin{aligned}
& p(x)=n_{i} \exp \left(\frac{E_{F i}(x)-E_{F p}}{k T}\right)=n_{i} \exp \left(\frac{E_{F i}(x)-E_{F p}}{q U_{T}}\right) \\
& n(x)=n_{i} \exp \left(\frac{E_{F n}-E_{F i}(x)}{k T}\right)=n_{i} \exp \left(\frac{E_{F n}-E_{F i}(x)}{q U_{T}}\right) .
\end{aligned}
$$

We arbitrarily fix the reference of all potentials in the middle between the effective Fermi level for holes, $E_{F p}$, and the effective Fermi level for electrons, $E_{F n}$. These are therefore located at $\pm V / 2 \cdot(-q)$, if we refer them to electrons with a charge of $-q$. The mid band gap Fermi level $E_{F i}$ is equivalent to the potential, i.e. $E_{F i}=-q \Phi$. Putting this together, we get

$$
\begin{align*}
& p(x)=n_{i} \exp \left(\frac{-\Phi(x)-V / 2}{U_{T}}\right)=n_{i} e^{-\frac{\Phi(x)}{V_{T}}} e^{-\frac{V}{2 U_{T}}} \tag{21}\\
& n(x)=n_{i} \exp \left(\frac{+\Phi(x)-V / 2}{U_{T}}\right)=n_{i} e^{+\frac{\Phi(x)}{U_{T}}} e^{-\frac{V}{2 U_{T}}} \tag{22}
\end{align*}
$$

Using these more general expressions for the carrier densities, the charge density (7) becomes

$$
\begin{equation*}
\rho(x)=q[p(x)-n(x)+N(x)]=q N(x)-2 q n_{i} \cdot e^{-\frac{V}{2 U_{T}}} \sinh \frac{\Phi(x)}{U_{T}} . \tag{23}
\end{equation*}
$$

We see that the only consequence of an externally applied voltage V is a change of the constant C in (10).

Figure 1: Band diagram of pn-structure with applied reverse bias.

6 Implementation

In order to avoid permanent unit conversion, you should stay with a consistent set of units. A suggestions is to use $\mu \mathrm{m}$ for x. The required numerical constants are then

$$
\begin{aligned}
q & =1.60217646 \times 10^{-19} \mathrm{C} \\
k & =1.3806503 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
\epsilon_{0} & =8.8541878176 \times 10^{-18} \mathrm{~F} / \mu \mathrm{m} \\
n_{i} & =1.01 \times 10^{-2} \mu \mathrm{~m}^{-3} \\
\epsilon_{S i} & =11.9 \\
T & =300 K
\end{aligned}
$$

The algorithm is as follows:

1. Choose the number of discretization steps N, for instance $N=400$.
2. Prepare an array $D[i]$ with the doping profile. n-doped regions are positive. Use the correct unit of, for instance, atoms per $\mu \mathrm{m}^{3}$!
3. Initialize an array Φ with a start potential. A reasonable approach is to require charge neutrality everywhere by setting ρ to zero in (23), so that we get $\Phi(x)=U_{T} \operatorname{arcsinh}\left(\frac{N(x)}{2 n_{i}} e^{\frac{V}{2 U_{T}}}\right)$.
4. Calculate X and B according to (18) and (15). The external voltage comes in through C in (13).
5. Process X and simultaneously B twice to solve the matrix equation. This is a bit tricky. This code perform the required operation:
```
// Eliminate the elements below the diagonal
// Process the matrix elements. S[i] is the resulting factor
S[1] = X[1];
for (int j=2; j<=N; j++) S[j] = X[j] - a * a / S[j-1];
// Process the B-vector. U[] contains the intermediate result
U[1] = B[1];
for (int j=2; j<=N; j++) U[j] = B[j] - a * U[j-1] / S[j-1];
// Eliminate the elements above the diagonal. Start at the bottom!
// Y[] is the result of the second step
Y[N] = U[N];
for (int j=N-1; j>=1; j--) Y[j] = U[j] - a * U[j+1] / S[j+1];
// Calculate Lambda from Y[] and S[]
Lambda[0] = 0;
for (int j=1; j<=N; j++) Lambda[j] = Y[j] / S[j];
```

6. Calculate λ from X and B (see code above)
7. add this λ to Φ
8. Start over with step 4.

6.1 Numerical Issues

For large bias voltages V, the straight forward implementation of (23) leads to problems because two very large numbers (the exponential of V and the sinh of the potential) must be calculated and subtracted. This problem can easily be solved by writing down the definition of the sinh and pulling V into the exponent there.

7 Addendum: Why Fermi level must be constant

In equilibrium, the current in the device must vanish. This is why diffusion and field currents (shown here for holes) must be equal:

$$
\begin{equation*}
q D_{p} \frac{d p}{d x}=q p \mu_{p} E . \tag{24}
\end{equation*}
$$

The hole density p and its derivative are given by

$$
\begin{equation*}
p=n_{i} \exp \frac{E_{i}-E_{F}}{k T} \rightarrow \frac{d p}{d x}=\frac{p}{k T}\left(\frac{d E_{i}}{d x}-\frac{d E_{F}}{d x}\right) \tag{25}
\end{equation*}
$$

Using $D_{p}=\mu_{p} k T / q$ and $q E=-d E_{i} / d x$ (this is not so obvious!), (24) becomes

$$
\begin{equation*}
q \mu_{p} \frac{k T}{q} \frac{p}{k T}\left(\frac{d E_{i}}{d x}-\frac{d E_{F}}{d x}\right)=-p \mu_{p} \frac{d E_{i}}{d x} \rightarrow \frac{d E_{F}}{d x}=0 \tag{26}
\end{equation*}
$$

Therefore, the Fermi level is constant in x.

8 References

1. D. A. Neaman: Semiconductor Physics and Devices: Basic Principles, The McGraw-Hill COmpanies 1992, ISBN 0-256-20869-7. (p. 221: Band Diagram with reverse bias, p. 269: electron/hole densities with pseudo Fermi Level
2. F. R. Shapiro: The numerical solution of Poisson's equation in a pn diode using a spreadsheet, IEEE Trans. Educ., 38 (1995), 380-384.
3. S. M. Sze: Semiconductor Devices Physics and Technology, John Wiley, New York, 2002, 2nd edition.

[^0]: ${ }^{1}$ The device can be considered as a series connection of many $p n$-structures where built-in voltages just add up
 ${ }^{2}$ Understanding this needs a bit of solid state physics...

