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1 Device description

We consider a silicon structure with a thickness D. The doping is a function of the depth x in the
device, with 0 ≤ x ≤ D. We can merge the donor doping ND(x) and the acceptor doping NA(x) into
an effective doping

N(x) := ND(x)−NA(x), (1)

because opposite dopings compensate each other. N(x) shall be positive for n-doped and negative for
p-doped regions, respectively. The built-in potential Vbi of this structure is given by the dopings at
the surfaces to

Vbi = UT ln

(
−N(0)

ni

N(D)

ni

)
(2)

where ni is the intrinsic carrier concentration and UT = kT/q is the thermal voltage1.
In the following, we will calculate the electrostatic potential Φ(x) (and also the field E(x)) nu-

merically for an arbitrary doping profile N(x). We will first write down a (nearly) exact differential
equation for Φ(x), then define an iterative procedure to successively improve an initial guess and carry
out the procedure numerically by discretization of the space coordinate.

2 Differential equation

The position dependent density of mobile electrons/holes shall be given by n(x) and p(x). The
electrostatic potential Φ(x) follows from the one-dimensional Poisson equation

d2Φ(x)

dx2
= Φ′′(x) = −ρ(x)

ε ε0
(3)

where ε is the semiconductor dielectric constant, ε0 is the permittivity of free space and ρ(x) is the
charge density given by

ρ(x) = q [p(x)− n(x) +N(x)] . (4)

In this ‘depletion approximation’ we have assumed that all doping atoms are activated (donors have
lost their electron, acceptors have catched an electron), which is basically fulfilled in the depletion
regions, which we are interested in. n-doped regions are positively charged when depleted, so that
we need a ’+’ sign for N(x) in (4). In equilibrium, electron and hole densities are functions of the
potential only2:

p(x) = ni exp

(
−Φ(x)

UT

)
(5)

n(x) = ni exp

(
+

Φ(x)

UT

)
, (6)

1The device can be considered as a series connection of many pn-structures where built-in voltages just add up
2Understanding this needs a bit of solid state physics...
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where the potential Φ(x) is relative to the Fermi potential ΦF which we arbitrarily fix to zero and
UT = kT/q is the thermal voltage. Note that these expressions fulfill the mass action law n(x) ·p(x) =
ni

2. The two expressions can be injected into (4) so that we get

ρ(x) = q N(x)− 2 q ni sinh
Φ(x)

UT
. (7)

The Poisson equation (3) becomes

Φ′′(x) = D(x) + C sinh
Φ(x)

UT
(8)

with the known quantities

D(x) := −qN(x)

ε ε0
(9)

C :=
2qni
ε ε0

. (10)

The task is therefore to solve (8) for Φ(x) for a D(x) given by the doping profile.

3 Iterative Solution (Newton - Raphson Method)

We use an iterative procedure to solve (8). In the i-th iteration, we assume that the exact solution
Φ(x) is given by an approximative solution Φi(x) and a (small) error term Λi(x), i.e.

Φ(x) = Φi(x) + Λi(x), with i = 0...∞. (11)

In each iteration, we determine an approximative solution λi(x) for Λi(x) and then use this result to
get a better solution Φi+1(x) = Φi(x) + λi(x). In the following, we omit the (upper) iteration index i
for better readability. Injecting (11) into (8) leads to

Φ′′(x) + λ′′(x) = D(x) + C sinh

(
Φ(x)

UT
+
λ(x)

UT

)
(12)

On the right hand side, we exploit that λ is small compared to Φ so that we can use the first order
Taylor approximation sinh(x+ ε) ≈ sinh(x) + ε · cosh(x). Equation 12 becomes

Φ′′(x) + λ′′(x) ≈ D(x) + C sinh
Φ(x)

UT
+

C

UT
λ(x) cosh

Φ(x)

UT
.

Bringing all λ-terms to the left leads to

C

UT
cosh

Φ(x)

UT
λ̃(x)− λ′′(x) = Φ′′(x)−D(x)− C sinh

Φ(x)

UT

or
A(x)λ(x)− λ′′(x) = B(x). (13)

with

A(x) =
C

UT
cosh

Φ(x)

UT
(14)

B(x) = Φ′′(x)−D(x)− C sinh
Φ(x)

UT
(15)

Equation 13 is linear in λ and therefore much simpler than the initial equation (8). The values of
A(x) and B(x) can be calculated from the doping profile and the approximative solution of the i-th
iteration Φ(i)(x). Note that B(x) is the difference of both sides in (8). It vanishes when Φ(x) is the
exact solution, so that λ(x) becomes zero.
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4 Discretization

We must solve (13) for λ(x) to get an improved solution. This can be done numerically by discretization
of all functions. We subdivide x = 0 . . . D into N equal intervals of length ∆ := D/N . The j-th grid
point is at xj = j ·∆, the grid points at the boundaries x0 = 0 and xN = D having indices 0 and N ,
respectively. All functions are now evaluated at discrete positions only, i.e. we use now a vector fj
instead of a function f(x). The second derivative of λ at an inner grid point j is

λ′′j =
λj+1 + λj−1 − 2λj

∆2
for j = 1 . . . N − 1.

Using this, (13) becomes

Aj λj + α (λj+1 + λj−1 − 2λj) = Bj for j = 1 . . . N − 1 (16)

with

α := − 1

∆2
= −N

2

D2

For now, we fix the voltage at the diode to Vbi (i.e. we apply no additional bias voltage). This fixes
the values of Φ0 and ΦN and we have λ0 = λN = 0. We therefore only need to calculate indices
j = 1 . . . N − 1. Equation 16 can be rearranged as

αλj−1 + (Aj − 2α)λj + αλj+1 = Bj

which can be written in matrix form as
A1 − 2α α 0 · · · 0

α A2 − 2α α 0 · · ·
0 α A3 − 2α α · · ·
... 0 α

. . . α
0 · · · · · · α AN−1 − 2α

 ·


λ1
λ2
λ3
. . .
λN−1

 =


B1

B2

B3

. . .
BN−1


or 

X1 α 0 · · · 0
α X2 α 0 · · ·
0 α X3 α · · ·
... 0 α

. . . α
0 · · · · · · α XN−1

 · ~λ =


B1

B2

B3

. . .
BN−1

 (17)

with

Xi := Ai − 2α =
C

UT
cosh

Φi

UT
− 2α (18)

This equation is of a simple form as only the first off-diagonal elements are non-zero. It can be solved
by Gauss elimination. We first subtract an α/X1-fold multiple of the first row from the second row
in order to eliminate the α in the first column. This gives

X1 α 0 · · · 0

0 X2 − α2

X1
α 0 · · ·

0 α X3 α · · ·
... 0 α

. . . α
0 · · · · · · α XN−1

 · ~λ =


B1

B2 − αB1
X1

B3

. . .
BN−1

 (19)

In the next step, we subtract a α
(X2−α2/X1)

-fold multiple of the second row from the third row and get

X1 α 0 · · · 0

0 X2 − α2

X1
α 0 · · ·

0 0 X3 − α2

X2− α2

X1

α · · ·

... 0 α
. . . α

0 · · · · · · α XN−1


· ~λ =



B1

B2 − αB1
X1

B3 − α
B2−αB1

X1

X2− α2

X1

. . .
BN−1


(20)
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We proceed with the following rows until all αs below the diagonal are eliminated. We then eliminate
the remaining αs above the diagonal in a similar way, starting at the lowermost row. The resulting
matrix has only diagonal elements so that the λs can be extracted directly.

5 Applying an External Reverse Bias Voltage

If we apply an external voltage V (in reverse bias), the structure is no longer in equilibrium and the
Fermi level is not constant any more: the levels at the p- and n-side are offset by q · V . Electron and
hole densities can be determined by using effective Fermi energies, one for each carrier type. Figure 1
shows the band structure of a pn-junction with reverse bias voltage V . Equations (5) and (6) must
be replaced by

p(x) = ni exp

(
EFi(x)− EFp

kT

)
= ni exp

(
EFi(x)− EFp

q UT

)
n(x) = ni exp

(
EFn − EFi(x)

kT

)
= ni exp

(
EFn − EFi(x)

q UT

)
.

We arbitrarily fix the reference of all potentials in the middle between the effective Fermi level for
holes, EFp, and the effective Fermi level for electrons, EFn. These are therefore located at ±V/2 ·(−q),
if we refer them to electrons with a charge of −q. The mid band gap Fermi level EFi is equivalent to
the potential, i.e. EFi = −qΦ. Putting this together, we get

p(x) = ni exp

(
−Φ(x)− V/2

UT

)
= nie

−Φ(x)
UT e

− V
2UT (21)

n(x) = ni exp

(
+Φ(x)− V/2

UT

)
= nie

+
Φ(x)
UT e

− V
2UT . (22)

Using these more general expressions for the carrier densities, the charge density (7) becomes

ρ(x) = q [p(x)− n(x) +N(x)] = q N(x)− 2 q ni · e
− V

2UT sinh
Φ(x)

UT
. (23)

We see that the only consequence of an externally applied voltage V is a change of the constant C in
(10).

EF,p

EF,i

Ec,p

Ev,p

EF,n

Ec,n

EF,i

Ev,n

q(Vbi+Vext)qΦFp

qΦFn

p region n region

qVext0

Figure 1: Band diagram of pn-structure with applied reverse bias.
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6 Implementation

In order to avoid permanent unit conversion, you should stay with a consistent set of units. A
suggestions is to use µm for x. The required numerical constants are then

q = 1.60217646× 10−19C

k = 1.3806503× 10−23J/K

ε0 = 8.8541878176× 10−18F/µm

ni = 1.01× 10−2 µm−3

εSi = 11.9

T = 300K

The algorithm is as follows:

1. Choose the number of discretization steps N , for instance N = 400.

2. Prepare an array D[i] with the doping profile. n-doped regions are positive. Use the correct unit
of, for instance, atoms per µm3!

3. Initialize an array Φ with a start potential. A reasonable approach is to require charge neutrality

everywhere by setting ρ to zero in (23), so that we get Φ(x) = UT arcsinh

(
N(x)
2ni

e
V

2UT

)
.

4. Calculate X and B according to (18) and (15). The external voltage comes in through C in
(13).

5. Process X and simultaneously B twice to solve the matrix equation. This is a bit tricky. This
code perform the required operation:

// Eliminate the elements below the diagonal

// Process the matrix elements. S[i] is the resulting factor

S[1] = X[1];

for (int j=2; j<=N; j++) S[j] = X[j] - a * a / S[j-1];

// Process the B-vector. U[] contains the intermediate result

U[1] = B[1];

for (int j=2; j<=N; j++) U[j] = B[j] - a * U[j-1] / S[j-1];

// Eliminate the elements above the diagonal. Start at the bottom!

// Y[] is the result of the second step

Y[N] = U[N];

for (int j=N-1; j>=1; j--) Y[j] = U[j] - a * U[j+1] / S[j+1];

// Calculate Lambda from Y[] and S[]

Lambda[0] = 0;

for (int j=1; j<=N; j++) Lambda[j] = Y[j] / S[j];

6. Calculate λ from X and B (see code above)

7. add this λ to Φ

8. Start over with step 4.

6.1 Numerical Issues

For large bias voltages V , the straight forward implementation of (23) leads to problems because
two very large numbers (the exponential of V and the sinh of the potential) must be calculated and
subtracted. This problem can easily be solved by writing down the definition of the sinh and pulling
V into the exponent there.
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7 Addendum: Why Fermi level must be constant

In equilibrium, the current in the device must vanish. This is why diffusion and field currents (shown
here for holes) must be equal:

q Dp
dp

dx
= q p µpE. (24)

The hole density p and its derivative are given by

p = ni exp
Ei − EF
kT

→ dp

dx
=

p

kT

(
dEi
dx
− dEF

dx

)
(25)

Using Dp = µp kT/q and q E = −dEi/dx (this is not so obvious!), (24) becomes

q µp
kT

q

p

kT

(
dEi
dx
− dEF

dx

)
= −p µp

dEi
dx
→ dEF

dx
= 0. (26)

Therefore, the Fermi level is constant in x.
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