NUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Silicon Detectors and Readout Electronics

Part 2: Applications

Peter Fischer, ziti, Universität Heidelberg

ELECTRON – MICROSCOPY WITHOUT FILM

Detectors: For Instance MAPS or Hybrid Pixel

**************** Giant MAPS auf Readout Board (5.6 cm)²,(1.4k)² Pixel, (40µm)² MAPS (MI3 collaboration, 15µm epi, 10f/s, 28e noise A. Clark & R. Turchetta)

ruprecht-karls-UNIVERSITÄT

HEIDELBERG

Example: Single Virus

MEDIPIX Quad (hybrid Pixel)

120keV 160 e / Pixel 4 e / Å²

McMullan, Faruqi: NIM A 591 (2008) 129-133 LMB, Cambridge

Silicon Detectors & Readout Electronics: Applications

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

PRECISE POSITION MEASUREMENT / TRACKING

DEPFET Pixel Detektor

DEPFET Resolution

DEPFET Imaging with X-rays

Raw data (50x50µm² pixels)

(tooth wheel of a wrist watch)

Analog Interpolation

Much better image

RUPRECHT-KARLS. UNIVERSITÄT HEIDELBERG

DETECTION OF SYNCHROTRON RADIATION

- In crystals, reflections for given λ occur at fixed angles. They depend on the lattice spacing according to Bragg's law $2d\sin\theta = n\lambda$
- Radiation sources are X-ray tubes or Synchrotrons
- Crystal is rotated
- Detectors are point, 1d, 2d
- Used in biology, chemistry, material sciences
- Increasing interest

Largest commercial pixel detector: Pilatus 6M

- DECTRIS: Spin Off PSI, Villigen, Schweiz
- 43.1 x 44.8 cm² Fläche, (172μm)² Pixel, 6 MPixel, 10 Hz
- Chips count photons in every pixel

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

Diffraction Pattern of Crystallized Macro Molecules

Silicon Detectors & Readout Electronics: Applications

A New Idea: Phase contrast X-ray Imaging

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David. Phase retrieval and differential phasecontrast imaging with low-brilliance X-ray source. Nature Physics 2, 258–261 (2006)

X-RAY ASTRONOMY

CCD for soft X-rays

- Energy: 0.2 5 keV
- Detector: pn CCD (HLL of MPG Munich) (6 cm)², (150µm)² Pixels, 73 ms per image

XMM-Newton Mission

- XMM = X-Ray Multi Mirror. (http://xmm.esac.esa.int/)
- Satellite launched 1999 by ESA
- X-ray mirror by shallow incidence reflection
- Need a parabolic and a hyperbolic mirror ('Wolter Type 1')

XMM Mirror Stack

• Use many layers to increase light throughput (~42 %)

XMM Mirrors

• 58 Mirror shells total (0.47 mm thick in 3mm pitch)

XMM-Newton CCD Detector

Silicon Detectors & Readout Electronics: Applications

Backside With Readout Chips

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Silicon Detectors & Readout Electronics: Applications

Cosmic X-ray Sources: Supernova

- Supernova discovered 1987
- Intensity increased by x 10 since year 2000

Cosmic X-ray Sources: Pulsar

ruprecht-karls-UNIVERSITÄT HEIDELBERG

DIGITAL X-RAY IMAGING

Digital X-ray- the LARGEST Pixel Chip

- 600x800 Pixel, ~(40µm)² (hexagonal)
- 24 x 28 mm², 480.000 Pixel,
- Presented early 2008 (IWORID conference)

Real Hardware at the Conference Dinner of the IWORD 2008 in Helsinki...

Xray Image of a leaf @ 8 keV

Simple Detector: Xe @ 12 bar. ~600 e per X-ray photon

Chip with CdTe Detector

- CdTe has high absorption for X-rays with 'high' energy
- Bump Bonding of ~8 cm²!

Spatial resolution with Line Chart

IC in package @ 35 keV

Silicon Detectors & Readout Electronics: Applications

Biological sample (fish, 25keV, 800ms)

ruprecht-karls. UNIVERSITÄT HEIDELBERG

Silicon Detectors & Readout Electronics: Applications

Variation: Multi Channel Plate (no silicon)

Silicon Detectors & Readout Electronics: Applications

PARTICLE TRACKING AT LHC

The ATLAS Detector

Silicon Detectors & Readout Electronics: Applications

ATLAS Inner Tracker

Luminosity 1x10³⁴ cm⁻²s⁻¹
Integrated fluence 2x10¹⁴ 1-MeV n_{eq}/cm² at r~30 cm

SCT Modules (silicon strips)

Silicon Detectors & Readout Electronics: Applications
ATLAS SCT (Strip Tracker)

^{ruprecht-karls-} UNIVERSITÄT HEIDELBERG

Silicon Detectors & Readout Electronics: Applications

^{ruprecht-karls-} UNIVERSITÄT HEIDELBERG

Silicon Detectors & Readout Electronics: Applications

ATLAS Pixel Detector: Overview

- Innermost detector of ATLAS
 - precision tracking and impact parameter measurements
 - Radiation-hard silicon sensors and front-end electronics
- Three 'barrel' layers in the central region
- Two end caps of three disks
- 80 million channels
- 1744 modules

430mm <

ATLAS Pixel 'Barrel' (cylindrical part)

- barrel frame (carbon fiber laminate)
- 'staves'
 - 13 modules
 - carbon-carbon support

• two staves are linked by a unique cooling tube

Filling the Barrel

Silicon Detectors & Readout Electronics: Applications

^{ruprecht.karls.} UNIVERSITÄT HEIDELBERG

Joining the two Half-Shells

Silicon Detectors & Readout Electronics: Applications

ATLAS Pixel 'End Caps'

- Sector: 6 modules mounted on carbon-carbon plates, sandwiching the cooling pipe.
- A disk has 8 sectors

Pixel Modules

Sensors

- n-doped bulk with n⁺ pixels
- pixel dimensions: $50 \ \mu m \times 400 \ \mu m$
- Bulk depth: 250 μm
- Radiation-hard to 50 MRad
- 16 Front-end (FE) chips
 - Bump-bonded to the pixels
 - 0.25um CMOS technology
 - Analog pre-amplification, discrimination, (TOT) measurement, and digitization
- Flex Board
 - · Connection to readout electronics
 - Distribution of power and HV
 - Temperature measurement (NTC)
 - Module control chip (MCC)
 - Communication with FE
 - Multiplexing FE data

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

- Opto-boards
 - Close to modules
 - Convert signals from electrical to optical (VCSEL lasers)
- Off-detector DAQ crates
 - Back-Of-Crate (BOC) card converts back from optical to electrical and de-serializes the data into 40 MHz streams
 - Read-Out-Driver (ROD) units format and monitor the data
- $\hfill \label{eq:similar}$ Similar path from $\hfill \hfill AQ \to \hfill \hf$

Installation Timeline

- Installed @ CERN 6/2007, connected 4/2008
- Cooling system was commissioned loop by loop (88 loops total)
 - Three loops with significant leaks and some with instabilities at low heat load

How a Detector System Really Looks...

An Example of a Golden Cosmic Track

For Comparison: CMS Tracker

SPECTROMETER IN SPACE

AMS: The Alpha Magnetic Spectrometer Experiment

Launched finally in 2011 (after many delays since 2005..)

- Detector has been installed at the ISS
 - 6.7 tons

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

- 2000 W
- 2 MB/sec data to ground
- 750 MHz PC with Linux, 4 redundant copies

AMS Scientific Goals

- search for heavy antimatter in cosmic rays, by measuring the charges on ~1,000,000,000 helium and other nuclei
- collect precision cosmic ray data at high energies, including 10¹⁰ protons
- discover or rule out certain particles as explanations for dark matter
- study cosmic ray propagation in the galaxy
- search for exotic particles or spectral features among cosmic rays

AMS Detector

Silicon Detectors & Readout Electronics: Applications

AMS Silicon Tracker

Silicon

Silicon Detectors & Readout Electronics: Applications

^{ruprecht.karls.} UNIVERSITÄT HEIDELBERG

Silicon Detectors & Readout Electronics: Applications

AMS Ladder in test stand

ruprecht-karls-UNIVERSITÄT HEIDELBERG

Silicon Detectors & Readout Electronics: Applications

AMS Readout Hybrids

Silicon Detectors & Readout Electronics: Applications

AMS Silicon Tracker + Support

ruprecht-karls-UNIVERSITÄT HEIDELBERG

Silicon Detectors & Readout Electronics: Applications

EARTH OBSERVATION WITH CCDS

Ultra High Resolution (optical) CCDs

- 10560 x 10560 pixels (9x9um²) > 100 Mpixel ! (Semiconductor Technology Associates)
- CCDs have (much) better QE than APS!

Silicon Detectors & Readout Electronics: Applications

Making Test Pictures from Space

• 'Siemensstern' on a house roof

^{ruprecht karls.} UNIVERSITÄT HEIDELBERG

PET Principle

- Positrons annihilate at marker positions
- Must detect coincident pairs of 511 keV γ
- With very good time resolution (some 100 ps), can determine decay position along line of flight ('ToF')
 - \rightarrow higher sensitivity

Classical Gamma Detector

- Crystals + PMTs for photo detection
 - Resolution via interpolation
 - Not possible in magnetic field

Next Generation: Solid State Detectors

- For use inside of MRI Scanners 'PET-MR', can use
 - APDs

8 x 8 Channel PET Module

- Stack of 3 PCBs (~3x3 cm²):
 - 1. SiPMs
 - 2. Amp. + Timing Chip
 - 3. Control & Power

Silicon Detectors & Readout Electronics: Applications

40 Channel PET Chip

- Need integrated chip solution for many channels
 - ToF: better resolution
 - larger detector (capture more gammas \rightarrow reduced patient dose)

The Finished Stack

Constructed by my group in the 'HyperImage' Project

^{ruprecht-karls-} UNIVERSITÄT HEIDELBERG

SUMMARY

Measured Quantities

- Directly detected:
 - Visible Light ... soft X-rays
 - Charged Particles (electrons, protons, pions,..., ions)
- With additional tricks
 - Neutrons (convert with ¹⁵⁷Gd, track electrons (29-181keV))
 - Gammas (Scintillators + photo detector, converter foil)
 - High energy neutral particles (segmented calorimeters)
 - ...
- Position
 - Imaging, momentum measurement,...
- Charge
 - X-ray energy, dE/dx, Z, light intensity
- Arrival Time
- Rates (particles/time)
ruprecht-karls-UNIVERSITÄT HEIDELBERG

Applications

- Astronomy
 - Optical Photons, also time resolved
 - X-rays (On satellites)
 - Polarimeter (Polarization of X-rays)
- Medicine
 - Radiography, Mammography
 - Auto radiography
 - Phase contrast X-ray imaging
- Biology
 - Microscopy
 - Single Molecule Detection
- Material Science, Industry, Safety
 - Crystal structure, Material composition,...

•

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Requirements

- High Segmentation
- Low Noise
- Thick detectors
- Thin detectors
- Radiation Hardness
- Low Cost

• . . .

- Low Power
- Small Dead Time

- \rightarrow Position
 - \rightarrow precise charge, precise position
 - \rightarrow good X-ray / Photon absorption
 - \rightarrow low multiple scattering (HEP, TEM)
 - \rightarrow fast charge collection
- \rightarrow no degradation
 - \rightarrow Large Area
 - \rightarrow Low cooling, many channels
 - \rightarrow little signal loss