
Signals & Reconstruction 
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§  Interactions 
• Charged particles 
•  X-rays 
•  Photons 

§ Signals from moving charges 
• Drift and Diffusion 
• Weighting Field 
•  Signals in Strip Detectors 

 
§ Reconstruction 

• Resolution with Binary Readout 
•  Influence of Noise 
•  Error of Centroid 
 

This Part 
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INTERACTIONS 



§ Described by famous Bethe-Bloch Formula 
§ Based on electrostatic interaction of moving charge with 

electrons in medium 

Interactions: Charged Particles 

Minimum Ionizing Particle 
(MIP) 
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Electron Hole Pairs 

Minimum Ionizing Particle 
(MIP): ~3.5 fC charge 
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§ Average Energy required for creating one e-h-pair: ~3.6eV 
§ Use BB-Formula for mip for 300µm Si: ~3.5fC = 22.000 eh 
§ 1fC = 6250 e!  

Minimum Ionizing Particle 
(MIP): ~3.5 fC charge 
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Energy Distribution for Single Particles 

Eh-pairs in 290um silicon 
Dots=Measured, Dashed Line= Landau 

Most 
probable 

Mean 

Positrons 

Pions 

Protons 
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§  Ionization has statistical 
fluctuations 

§ Concept described by ‘Landau 
Distribution’, ∃ better formulae 

§ Worst match for thin detectors 

§ Asymmetric: 
Average energy loss != 
most probable energy loss 

§ Conservative calculations use 
most probable value MPV 

§ One reason for large energy tail: 
Knock-on electrons ‘δ rays’ 

§ Often perpendicular to track 



Energy Loss in Silicon (500 MeV π) 
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260 eV/µm x 320µm 
= 83200 eV (/3.6eh/eV) 
= 23000 eh 
~ 3.5 fC 

PDG 



§  In 300µm silicon, mips deposit ~ 3.5 fC ~ 22.000 eh 
§ Most probable energy < average energy 
§ Asymmetry gets more pronounced for thin detectors 
§ Some hits depose a large energy. 

•  This is caused by single fast electrons (‘delta rays’) 
•  A large fraction of the energy is deposited ‘at the side’ → spatial 

resolution of such events is bad 

§ Note that charge gets smaller when shared among several 
electrodes. 
•  For instance in the corner of 4 pixels: 22.000 / 4 = 5500 eh pairs 
• Readout must still be able to see this! 

Summary 

© P. Fischer, ziti, Uni Heidelberg, Seite 9 Silicon Detectors - Signals 



§ Low E:  Photo Effect   γ → e-  (atom shell) 
§ Medium E:  Compton Scatter  γ + e- → γ + e- 
§ High E:  Pair Production  γ → e+ e- 

Electromagnetic radiation (γ = Photons, Gammas) 
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Measured cross section 
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K-Edge 



§ Gamma flux decreases with depth:  
§ λ often given in mass/unit area (g/cm2) which is more 

material independent 

Absorption Coefficients 
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§ For mono energetic X-rays, the number of e/h pairs created 
is not constant 

 

§ The width is limited by the Fano Factor F ~ 0.1 (0.07…0.16) 
§ Calculation / measurement of F are difficult. 

Fano Factor 
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occurrences 

# eh pairs 

X-ray 
Energy EX 

〈eh Pairs〉: 
EX/3.6eV 

σ2 = 
F × EX / 3.6eV 



§  It is impossible to measure 10keV with 10eV (3 eh) resolution! 
§ Germanium is slightly better, because only 2.9 eV are 

required per eh pair 

Energy Resolution Limit due to Fano factor 
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FWHM = 1% 



§ 55Fe →(EC, 2.73a)→ 55Mn (excited) 
§ 55Mn emits a 5.90keV X-ray (Kα), 24% 

§ Spectrum with DEPFET, τ=10µs, noise = 1.6 e @ RT 

Example: Spectrum of X-rays from 55Fe 
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Fano 
Limited 



§ They are attenuated exponentially 
§ Photons must have at least E = hν = Egap = 1.12eV to make 

e-h-pair → hard cutoff in IR (~1100 nm) 
§ Must take into account reflection at the surface (ε change) 
§ Example: 600µm silicon: 

Visible Photons 
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Low 
Photon 
 energy 



Absorption Coefficients for Visible Photons 

Silicon Detectors - Signals © P. Fischer, ziti, Uni Heidelberg, Seite 17 

Sze 
IR cutoff 

Band gap changes 
with temperature 



§ Reflections at surface (Si, Passivation) can be reduced by 
anti reflex coatings (ARC) 
• Can be ‘perfect’ for a well defined wavelength 
• More difficult for wider spectra 

  
§ For short wavelength (UV), absorption is very high. 

If the detector has a ‘dead layer’ (e.g. thick implantations), 
this leads to significant losses 

§ For long wavelengths (IR), detectors must be thick 

Visible Photons 
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Multiple Scattering 
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§ Several small scattering events lead to a (small) track 
deflection by an angle θ: 

§ This is a statistical process 
with average 0 and some 
rms value 

§ Material thickness measured in radiation lengths Xo 

§ This degrades track reconstruction → momentum error 

Particle Data Book 

θ



§ Assume    σ = f(x)    (x = thickness) 

§ Therefore:  f(2D) = √2 f(D) 
→   f(x) = k √x 

Why is σ ∝ √Thickness  (roughly) ? 
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σ1

σ2

σ1 = f(D) 

σ2 = f(2D) 

σ2

σ2 = σ1 ⊕ σ1 = √2 f(D) 

Same 
Scatter 



MOTION OF ELECTRONS (AND HOLES) 



§ Particles in a field 
§ Cars on a street 
§  ‘Zorb’ balls on a hill 

§ This is because energy is dissipated by other mechanisms 
and is not available for acceleration any more 
•  Acceleration stops when EDISSIPATED(v) = EFED_INTO_SYSTEM 

What is ‘Drift’ ? 
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reach a limit velocity although 
the accelerating force remains 



§ Charges move in E-field with speed  v = µ E 
§ µ is the mobility. It is different for electrons and holes: 

§ Drift speed saturates at high field (‘velocity saturation’) 
↔ 
µ decreases (‘mobility degradation’) 

Drift, Mobility, Mobility Degradation 

v D
rif

t (
m

/s
) 

vSat ~105 m/s 

1                 2                 3   E(V/µm) 

Constant mobility 
v(x) = µ E(x) 
j(x)  = - q n µ E(x) 

saturation 

critical field 
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Many different 
numbers in 
literature… 

Mobility µ = v / E  
(or µ = ∂v/∂E) drops 

~ 140 µm2/ (V ns)  



§ Estimate how long it takes to accelerate an electron to full 
drift velocity: 
•  i.e. assuming a constant acceleration a, when do we reach vdrift? 

§ µ E = vdrift = a T = T F / m* =  T q E / m*    →    T = µ m* / q 
 
( m* = effective electron mass in crystal ~ 1.08 me at 4.2 K) 

§ µ  ~ 0.14 m2/Vs 
§ m*  ~ 1.08 × 9.11 × 10-31 kg 
§ q  = 1.6 × 10-19 C 
 
§ T = 0.86 ps  = ‘instantaneous’ 

When is drift speed reached ? 
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a = F / m F = q E 

For fun: 
How many silicon atoms does the electron 
pass by before it reaches drift speed? 
The distance depends on E: 
s = E m µ2 / (2q) ~ 0.03µm for E=0.5V/µm 
 
With the lattice constant of Si = 5.4307Å  
= 5.43 × 10-4 µm, this are ~55 atoms. 



§ Reference picture of drift velocity (from Sze): 

Velocity Saturation 
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Electrons 

Holes 

1 V/µm 



§ Describe µ[E,T] with a fit to measured data 
(C. Canali, G. Majni, R. Minder. and G. Ottaviani, “Electron and Hole Drift Velocity 
Measurements in Silicon and their Empirical Relation to Electric Field and Temperature”, 
IEEE Trans. on Electron. devices, Nov. 1975, vol. 22, issue 11, pp. 1045-1047) 

§ Parameterization:                                          (see pixel book) 
 
§ Electrons: 

•  Vs  = 1.53 × 109 T-0.87 cm/s 
•  Ec  = 1.01 T1.55 V/cm 
•   β  = 2.57 × 102 T0.66 

§ Holes: 
•  Vs  = 1.62 × 108 T-0.52 cm/s 
•  Ec  = 1.24 T1.68 V/cm 
•   β  = 0.46 T0.17 

Parameterization 
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@300K 



Comparison to Sze (Overlay of previous formula) 
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§ Simpler Formulae for faster calculation 
§ Use new Units: ns/µm/V   ([E] = V/µm, [v] = µm/ns)  

Further simplification of Fit @ 300K 
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§ Approximate field in Sensor: 
•  100V / 300µm → E = 0.3 V/µm  just at depletion 
•  300V / 300µm → E = 1 V/µm  significant overdepletion 

§ → significant effect   

How Relevant ? 
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§ d  = 300 µm = 0.03 cm  detector thickness 
§ V = 100 V  depletion voltage 
§ µ  = 1400 cm2/Vs  ~ mobility of electrons 

§ v  = µ E 
 ≈ µ V / d  approximation! E is not constant! 
 = 1400 cm2/Vs  ×  3333 V/cm 
 = 4.7 × 106 cm/s = 47 µm/ns 

§ T  = d / v = d2 / µV  
 = 300 µm  /  47µm/ns 

T ~ 6.4ns 

Typical Value for Drift Time 
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§ During the drift time T ~ d2 / µV, the charge cloud becomes 
larger by diffusion. 
Calculate diffusion through full thickness: 

§   
 

§ (when using Einstein’s equation                                  ) 
§ This is the same for electrons and holes! 
§ Numerical value: 

Diffusion 
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FWHM = Full Width @ Half Maximum 

(for a Gauss 
Distribution) 



SIGNAL INDUCTION 
(SIGNALS FROM MOVING CHARGES) 



§ When charge Q is moving between conductors, when is the 
signal ‘seen’ (as charge) at the electrodes? 
 
a) when Q reaches the electrode 
b) immediately when Q moves 

 
§ Consider charge between two conductors: 

§  Induced charge on S1 / S2 depends on the position 

Introduction 
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correct 



§ Voltage at electrodes is U, potential distribution is 

§ Moving charge     by       changes potential energy by 
 

§ The energy of the capacitor must change by this: 
 

§ Energy conservation requires dEpart = dEcap 

§ → The induced charge dQ on the capacitor is 
dQ = dEcap / U = dEpart / U = q ∇(Φ / U) dx 

§ This dQ is independent of U (because Φ ~ U) 
•  In parallel plate cap with Φ(x) = U x / d → ∇(Φ / U)  = 1/d = const 

§ When q drifts the whole way, the total charge is 
Q = ∫dQ = q / U ∫ ∇Φ dx = q 

Two electrodes 
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§ Consider general arrangement of N electrodes 
§ We want to know the signal on one electrode i when a 

charge is moved from A → B 

§ Ramo’s theorem (1938): 
1. Calculate the solution of the Laplace equation ΦW(x) for  
    Vi = 1V and all other electrodes = 0V 
2. The charge induced on i is ΦW(B) - ΦW(A). 
3. The current is j = v(A) ∇ΦW(A) 

General rule: Weighting Potential / Ramo’s theorem 
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V=0 

V=0 

V=0 

V=1 
A 

B 



§ Several Methods 
•  Energy arguments 
• Green’s Function 
• Gauss’ Law 

§ See Spieler’s Book, for instance… 

Derivation of this 
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§ Weighting Field and real field (causing drift) are different! 

§ Weighting potential can be calculated numerically solving 
the Laplace equation 
•  In one dimension, this is d2Φ(x)/dx2 = 0 
•  If space is discretized, i.e. Φ(x) → Φi, then 

dΦ/dx  = (Φi+1 - Φi) / Δx 
d2Φ/dx2  = [ (Φi+1 - Φi) / Δx - (Φi - Φi-1) / Δx] / Δx  

 = (Φi+1 + Φi-1 - 2 Φi) / Δx2  
§ The Laplace equation becomes Φi = (Φi+1 + Φi-1) /2. 

i.e. Field values must be the average of the neighbors. 
§ This also works in 2 or 3 dimensions. 
§ Solution can be found iteratively 

§ See Program 

Weighting Potential. Numerical Solution 
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§ Center = Average of 4 neighbors: 
Φi,j = ¼ (Φi-1,j + Φi+1,j + Φi,j-1 + Φi,j+1) 

§ Examples: 

How do solutions of Laplace’s Equation look like? 
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Plot Lösungen in 3D 
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§ For 2D problems conformal mappings can be used to 
transform a geometry to another geometry. 

§  If the initial potential solves the Laplace Equation in the 
‘old’ geometry, then Laplace’s Equation is also fulfilled by 
the transformed potential in the new geometry. 

§  If (x,y) are considered as Real- and Imaginary part of a 
complex number z = x + i y, then any (complex) function 
f(z) = u(z) + i v(z) is a conformal mapping. 

§ Therefore, the problem is reduced to finding the correct 
complex transformation function 

Weighting Potential: Direct Calculation 
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§  f(z) = ez = ex+iy = ex cos y + i ex  sin y 
•  A: e0 + 0 × i = 1 + 0 × i   B: e1 + 0 × i = e + 0 × i 
• C: e0 + 2 × i = cos 2 + i × sin 2  D: e1 + 2 × i = e cos 2 + i × e sin 2 

 
§ Parallel Plate Capacitor   →   Cylinder Capacitor 

Example for a Conformal Mapping 
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Weighting Potential of Strips 
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§ a = 0.2 
§ See Mathematica 

Weighting Field for narrow strips 
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§ Superposition of Φs of all strips → parallel plate Potential 

Superposition of all Weighting Potentials 
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+ + + + 

= 



§ Strip sees increasing current 
§ Neighbor sees bipolar current 
§ See Applet 

§ Most charge is induced when charge is CLOSE 
§ Trapped (stuck) charges do not contribute much signal! 

Signals on Strip & Neighbor 
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Signal in Parallel Plate Detector (no W-Potential!) 
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Spieler 

180V 
overdepletion 

30V 
overdepletion 

§ For parallel plate, signals on both sides are identical! 
§ Signals from single charges & tracks quite different 



Signals in Strip Detector (→ Applet & FieldProgram) 
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Spieler 

Charge 

Current 

n-strip 

n-strip p-strip 

p-strip 

§ Electrons and holes have different speed 
§ Their contributions (for strips) are very different 
§ Total charge (no trapping!) is same on both sides! 

integral 

Signal mainly from 
holes. They are slow 
at the end of the drift 



SIGNAL RECONSTRUCTION 



§ Consider very narrow signal 
§ Only one strip is hit 
§ Reconstructed position = strip center, error = offset in strip 

§ Sigma of Error: 

Spatial Resolution of Narrow Signals 
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x 

p/2 - p/2 

x 

Error     xr 



§ Consider ‘Box’ Signals for simplicity 
§ When 2 strips are hit → reconstruct at edge → small error 

 

§ Minimum Error for b = p/2. Error becomes half: σ = ½ p/√12 

Resolution with wider Signals (Binary Readout!) 
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Example for ‘Box’ Signals 

§ Shallow Incidence 
§ Signal width zsignal depends on hit position zhit and sensor 

thickness D 
§ Cross section of sensor: 

 
§  In this geometry, wider strips for large z are best! 
§ (Note that signals on neighbor pixels are not correlated!) 

r 

zhit 
zsignal 

D 

zsignal = zhit × D / r 

z=0 
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§ With signal distributed over many strips, can calculate 
center of gravity 

§ But: too wide signal (with constant amplitude) 
→ signal per strip gets small 
→ NOISE on strips degrades reconstruction 

§ Where is the optimum? 

Reconstruction of Wide signals 
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§ Signal at position     is distributed over N strips at  
§ Signal on i-th strip is 

§ Sum of all signals is normalized to 1: 

§ Assume we can perfectly reconstruct position as center of 
gravity: 

 

 
§ Now assume noise      on all strips 
§ Reconstructed position is now: 

Limits in Spatial Resolution from Noise (1) 
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§ This becomes (Taylor Expansion of Denominator): 

§ The Error is therefore: 

§ We need the standard deviation: 
 
 
 
 
 
 
 
where we have used                          for uncorrelated noise  

Limits in Spatial Resolution from Noise (2) 

© P. Fischer, ziti, Uni Heidelberg, Seite 59 Silicon Detectors - Signals 



§  If we chose the origin such that 
 
 
 
then this simplifies to: 

§ The Shape of the noise distribution is only a small effect  

Limits in Spatial Resolution from Noise (3) 
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3



§ Various noise distributions can be treated by using higher 
moments 

§ Possible noise shapes 
• Gaussian Noise 
•  ‘Box’ Noise 
• Noise from 50 Hz (sine) pickup 
•  Theoretical limit of two delta peaks 

§ Effects are very small 
§ Formula: See exercise…. 

Effect of Noise Distribution 
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§ Consider two strips at x1 = -a/2 and x2 = +a/2 
§ Signals for a hit at x are 

§         ,        and         are fulfilled: 
 
S1 + S2 = 1;      x1 S1 + x2 S2 = x;      x1 + x2 = 0 

§ We get 

§ Or 

§ For σn = 0.1 (Signal/Noise = 10), resolution = 8% ⋅ a 

Example: Strips 
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1 2 3



§ Come back to center of gravity method 

§ Question: 
What is the theoretical limit for a strip structure with no 
noise (i.e. the best we can do with this method)? 

§ We expect: 
•  Small error for wide signals 
•  a/√12  for narrow signals 

§ The following derivation is not found in books! 
§ Assumptions: 

• Charge cloud has a symmetric shape f(x), i.e. f(x) = f(-x) 
•  f(x) is normalized, i.e. integral is 1 
•  Strip pitch = width is a. 

Reconstruction by Center of Gravity (‘Centroid’) 
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Reconstruction by Center of Gravity (‘Centroid’) 
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x 

xc ? 

xc 

S0 S1 

Staircase 

Signal in strip m when 
Charge cloud is centerted 

arround xc  

Reconstructed 
position 



Divide Staircase in sym. / asym. parts (0<xc<a/2) 
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0 a 2a -2a -a 

g(x) = m Σ Boxa (x + xc - ma) 
 
Left edge: -a/2 = x + xc – ma ⇒ x = ma - a/2 - xc 

xc 

0 a 2a -2a -a 

g(-x) 

0 a 2a -2a -a 

g(x) + g(-x) = 1 – Σ Boxa-2xc (x-ma) 



§  Integral of asymmetric part is zero (f symmetric) 
§ We are left with 

§ To solve this, move to Fourier Space with 

§ We can use 

Theoretical Limit of Centroid method 
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§ For very small f(x), the Fourier Transform ~f(..) goes → 1 
We get the Fourier Series of a saw tooth, as expected 

Integral in Fourier Space 
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Can solve integral 

xerr 



Sigma of Reconstruction Error 
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§ For a Gaussian signal with width σ�
�
�
�
�
we get  

§ Here                          and s = σ/a  

Centroid Reconstruction of Gaussian 
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§ Method is ‘nearly perfect’ when σ > a/2 

Centroid Reconstruction of Gaussian 
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§ Resolution for small σ is bad 

§ The infinite sum must be limited to reduce noise 
contributions. The choice is fairly arbitrary 

§  In real system, there is often a threshold (hits below this 
are not read out) 

§ The reconstructed amplitude is wrong (signals below 
threshold are lost) 

§ Broken pixels need special treatment 

§ … 

Problems with Centroid 
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§ Noise will degrade resolution for wide clusters 

§ There is an optimum signal width   σ = 0.4 a 
(This depends only weakly on noise) 

Effect of Noise 
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§ (Normalized) Probability Density is given. 
§ Numerically: piecewise linear function (corner pairs (xi, yi)) 

§  Integrate 

§ Generate Random Number in [0..1], Use as y, look up x 

(How to Generate Arbitrary Random Distributions) 
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A better approach… 
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§ Assume a hit position x and amplitude a 
§ All differences between measurement and expectations 

must be explained by noise and threshold 

§ Even a non-hit (below threshold) gives information! 

§ Work in progress.. 

§ Looks good (see plots). But complicated for 2D structures 
and real-world behavior (needs lookup tables) 

§ Stay tuned… 

Better (?) Approach… 
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