

CBMnet as FEE ASIC Backend

17th CBM Collaboration Meeting P2 – FEE/DAQ/FLES University of Heidelberg Computer Architecture Group Frank Lemke, Ulrich Brüning 05.04.2011

Outline

- Motivation
- Front-end ASIC CBMnet implementation
 - Structure
 - Features
 - Existing operational Modules
 - Functions under Development
- HUB-ASIC
 - CBMnet Structure
 - HUB ASIC Structure
 - Workpackages
- Conclusion & Outlook

Motivation

- CBMnet delivers a CBM specific implementation
 - High Bandwidth for CBM requirements
 - Including a synchronization mechanism
 - Unified communication over one bidirectional link (possibly unbalanced)
- \Rightarrow Creation of a standardized CBMnet front-end ASIC building block
 - Integration into different types of front-ends possible
 - Generalized easy to use interface
 - One DAQ frontend read-out chain used in several parts of the experiment

RUPRECHT-KARLS-

Features of CBMnet

CBMnet V1.0 Features	Planned additional CBMnet V2.0 extensions
 Communication over one optical link supporting DTM, DCM and DLM Optimized data utilization about 91 % (about 73 % considering 8b/10b) Optimized easy to use Interface Highly modular CBM LP code structure Special adapted routing scheme Fast and efficient administration packets Retransmission for Control Packets System wide clock recovery with low jitter Deterministic link latency feature for well defined Deterministic Latency Messages 	 Lane handling for unbalanced communication Support for large messages within hardware Planned data loss strategy in cases of overloads at the end of epochs Communication also reliable for data stream Meta data detection adaption to find Meta data within message streams in early system stages

Existing operational Modules

- CBMnet V1.0 stable working within several FPGA solutions
- Changes for V2.0 can thereby be tested efficiently
- All modules are ASIC ready implemented
- Only XML description for RF required

Readout Controller

Data Combiner Board

Active Buffer Board

Cosy Beamtime December 2010

Functions under Development

Digital design parts under construction

- Register File Control Module
- CBM V2.0 protocol changes
- SERDES Modules

- Analog parts required for CBMnet read-out
 - Delay Cells
 - LVDS Cells

- \Rightarrow Generic CBMnet control block for FEE ASICs
- \Rightarrow First implementation for SPADIC together with Tim Armbruster

Interface - Data Send Example

- Interface optimzed for easy and efficient data transmission
- Variant of valid-stop synchronization
- All protocol specific features like initialization, retransmission are not visible for users

RUPRECHT-KARLS-

UNIVERSITÄT HEIDELBERG

CBMnet Structure

HUB ASIC Structure

Workpackages

Design tasks

- Analysis and adaption of CBM link port
- CBM protocol V2.0 has to be made ASIC ready
- Dynamic configuration for 1x, 2x, 4x
- Serializer and CDR at 2.5 Gb/s 5Gbit/s (CBM group in India)
- Clock distribution uses clock line at 500MHz
- Serializer at 500Mb/s interface, 8B/10B coded, phase alignment
- Low level initialization and hub configuration
- Special crossbar implementation
- Complete deterministic design
- Fault correction, redundancy for lanes etc.

Workpackages

Backend tasks

- Process technology decision
- Collection of IPs and libs
- Integration and backend design
- Radiation tolerant design

Test & Verification tasks

- Verification
- FPGA prototyping (in cooperation with KIP/Frankfurt)
- ASIC prototyping (ZITI and CBM group India)

Other tasks

- Project planning
- Coordination

Conclusion & Outlook

- CBMnet prototyping was successful
- \Rightarrow CBMnet logic will be included into SPADIC front-end ASIC
- \Rightarrow Generation of reusable front-end ASIC read-out building block

- HUB CBM planning has to be continued
- Boundary conditions has to be solved

Thank you for your attention !

Questions ?