SPADIC 1.0 Digital Signal Processing

Michael Krieger

CBM FEE/DAQ Workshop January 26, 2012

- (E

New in SPADIC 1.0

- digital filter
- 4 stages
- 16 bit resolution
- programmable coefficients

イロト イポト イヨト イヨト

Why?

- prevent pile-up
 - separate individual pulses ("ion tail cancellation")
 - help hit logic to work properly
- eliminate low-frequency baseline fluctuations
- add flexibility \rightarrow adapt to detector characteristics

one filter stage

A (1) > A (1) > A

-

Finding the output signal

- numerically: use recursive definition y[n] = x[n] + bx[n-1] + ay[n-1]
- analytically: \mathcal{Z} -transform translates into multiplication $\mathcal{Z}{y} = H \cdot \mathcal{Z}{x}$
- transfer function $H(z) = \frac{1+bz^{-1}}{1-az^{-1}}$

< ロ > < 同 > < 回 > < 三 > < 三 > -

э

- Overview How it works Limitations
- \mathcal{Z} -transform relatively easy with exponential functions
- model the signal as weighted sum of exponential terms: $x[n] = \sum w_i e^{-nT/\tau_i} = \sum w_i q_i^n$ $(0 \le q_i \le 1)$

- get the real signal by convolution with shaper impulse response
- can be ignored: $H_{\text{filter}}(H_{\text{shaper}}\mathcal{Z}\{x\}) = H_{\text{shaper}}(H_{\text{filter}}\mathcal{Z}\{x\})$

Tail cancellation

- filter stage transfers relative weights w_i between terms
- one exponential term can be eliminated

useful coefficient range

- $-1 \le b < 0, \quad 0 \le a < 1$
- $|a| < |b| \quad \Leftrightarrow \quad 0 \le a < -b \le 1$
- simple/extreme case: $a = 0, b = -1 \Rightarrow y[n] = x[n] x[n-1]$

Examples

Michael Krieger SPADIC 1.0 Digital Signal Processing

Examples

Examples

Limitations

Noise / Quantization error

- filter has high-pass characteristic
- noise present in signal gets emphasized
 - analog noise + ADC quantization error
 - forces tradeoff
- filter introduces additional quantization error

Quantization error

< E

Quantization error: simulations

Error distribution

Error histogram

Michael Krieger SPADIC 1.0 Digital Signal Processing

Quantization error: simulations

Mean of error distribution

Michael Krieger SPADIC 1.0 Digital Signal Processing

Quantization error: simulations

Sigma (width of error distribution)

Michael Krieger SPADIC 1.0 Digital Signal Processing