SPADIC – Status and plans

Michael Krieger

TRD Strategy Meeting 29.11.2013

Reminder: SPADIC 1.0 architecture

Charge sensitive amplifier

- input range: 75 fC
- $h(t) \propto t \cdot e^{-t/\tau}$
- shaping time: $\tau = 80 \text{ ns}$

two amplifiers per channel selectable:

- positive polarity (4–5 mW)
- negative polarity (10 mW, not optimized)
- layout & schematics: modular, scalable

CSA characterization

- simulation + previous testchips: ENC = 800 e⁻ @ 30 pF (300 e⁻ @ 0 pF)
- tuning of bias settings → local noise minimum

• ENC =
$$\frac{q}{S/N(q)} = q \cdot \frac{\sigma}{h(q)}$$

- $q \stackrel{?}{=} 1.8 \text{V} \cdot 15(?) \text{ fF}$
- $S/N \le 180$ (CSA + ADC)

CSA pulse shapes

æ

▲□ ▶ ▲ 三 ▶ ▲ 三

CSA "jump"

- increase $R_{FB} \rightarrow CSA$ jumps away from op. point
- recover: turn amplifier off/on
- luckily away from good settings

ADC

- current mode pipelined design
- 25 MHz sample rate, continuously running
- 9 bit nominal output (2's complement)
- resolution ≈ 8 bits
- 4.8 mW, rad-hard layout, $400 \times 300 \,\mu\text{m}^2$

ADC measurements

INL + noise: taken at 20 MHz sample rate, preliminary bias settings

Digital signal processing

Digital signal processing

purpose: "ion tail" cancellation

shorten pulses \rightarrow reduce pileup/help hit logic

Hit logic

Selection mask examples

→ allows tradeoff between quality of signal reconstruction and data volume

Message size (selection mask)

•
$$n_{\text{words}} = 3 + \left[\frac{9 \cdot n_{\text{samples}} + 3}{15}\right], \quad 1 \le n_{\text{samples}} \le 32$$

- *n*_{samples} = 0 also works!
- offset: 3 words (channel/group ID, timestamp, hit type, stop type)

Multi hits

What happens when a channel is triggered again, before the current message is completed?

Message output multiplexing

Error handling

What happens when a channel output buffer is full? Test case:

input signal: square wave, period = 30 time bins (>600 kHz hit rate) reconstructed output signal: no problem with only one channel active

force buffer overflow with neighbor trigger \rightarrow MUX can't read fast enough

 \rightarrow Similarly for ordering FIFO, incl. handling of flipped bits (SEU).

CBMnet interface

- error checking, retransmission
- deterministic latency messages (DLM)
- maps data + control traffic to serial LVDS links
- 500 Mbit/s (DDR),
 8b/10b encoded (1 input,
 2 outputs)

Plans

Current test setup "rev. A"

Plans

Packaging: QFP176 (23 mm)

New PCB "rev. B3x"

- 3 packaged SPADICs on PCB
- distance: 114 mm (matching TRD layout)
- PCB size $\approx 15 \text{ cm} \times 40 \text{ cm}$

SPADIC wish list

- some obvious fixes (serializer glitch, CBMnet retransmission, comparator, ...)
- increased input range (75 fC \rightarrow 200 fC)
- drop/reduce functionality (IIR filter, ...) → needs user experience and/or specification
- CBMnet "3.0" (W. Müller, DAQ Meeting Nov. 21) should leave SPADIC logic untouched (or I didn't fully understand) → needs proper specification!

SPADIC

Self triggered Pulse Amplification and Digitization asIC

http://spadic.uni-hd.de