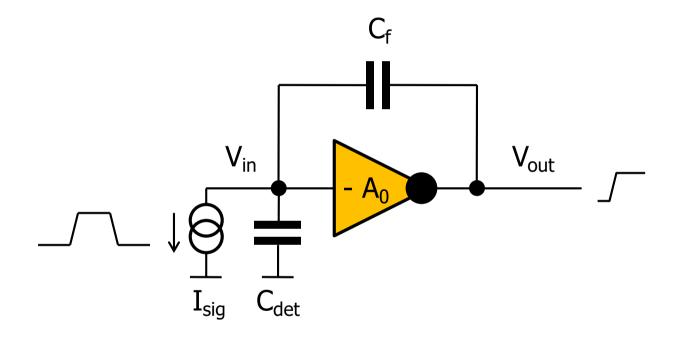
RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Exercise: Charge Amplifier

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg


Motivation

- Many sensors deliver charges (e.g. photo diodes)
- We want to amplify such (small) charge signals
 - Our goal will be to see, e.g. 1000 electrons. Can we see 100?
- A critical question will be the noise in the circuit
- We will reduce the noise by
 - Dimensioning the transistors in the amplifier
 - More current
 - Filtering
- We will start with an idealized circuit and refine it step by step
- We will have to consider the capacitance of the 'detector' at the input

Ideal Charge Amplifier

An ideal charge amplifier consists of an inverting amplifier with large gain A₀ and a 'small' feedback capacitor C_f.

- The input charge is delivered by a trapezoidal current pulse
- For the start, we neglect the input capacitance C_{det}.

Basic Operation

- The current shall have rise/fall times 1ns and a plateau of 5ns.
- What plateau current do you need to deliver Qin = 1 fC ?
- Use a vcvs as amplifier
 - Ground the positive input
 - Use a gain of -100 to start with
 - Set C_{det} = 0 for a start
- Start with C_f = 100fF. Make sure it is discharged at t=0.
- Simulate the circuit. What is the output voltage after Q_{in}?
- Calculate the amplitude of the output signal (after all charge has arrived) as a function of Q_{in}, A₀ and C_f.
 - Hint: When $C_{det} = 0$, all input charge must flow to C_f . Input and output voltage are related by A_0 .
 - When later C_{det} >0, some charge is left on C_{in} .

Discharging C_f

- Inject two consecutive charge packets at t=10ns and t=100ns
- The output does not 'come back to 0'. This is not good.
- Add a discharging resistor R_f in parallel to C_f.
- What value do you need to discharge in roughly 1µs? Simulate and calculate.
- The resistor effectively removes the charge (stored on C_f) from the input node.
- Tricky: Can you use a vccs to achieve the same effect?

Adding a Source Follower

- Add a source follower (MOS + current source) to the output
 - You could try a vdc first to understand what happens.
- Connect R_f after the SF.
 - What changes? Why?
- Connect C_f after the source follower
 - What changes? Why?

- (Without Source Follower)
- Now add a detector capacitance of, say, 10 pF.
- How does the output change? Why?
- Derive a formula of the signal height as function of Q_{in}, A₀.
 C_f and C_{det}.
- What can you do to get more voltage?
- Try this out!
- Try out some extreme cases an compare simulation result and calculation.

A Real Amplifier

- Replace the idealized amplifier (i.e. the vcvs) by an NMOS gain stage with an ideal current source load.
- Simulate the gain
 - What is a good operation point?
 - What is the best operation point?
- Simulate the charge amplifier output (with C_{det}).
 - Do you find what you expect?
- Increase the current more and more.
 - What happens?
 - Why?