

Exercise: DC Feedback of the Charge Amplifier

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

Overview

- We have seen in part 1 that the charge sensitive amplifier ('CSA') needs a 'DC feedback' which
 - 'discharges C_f'
 - 'removes the signal charge from the input node'
- We want to replace the resistor first by a MOS and then by a more complicated transconductor
 - We will see that the MOS is difficult to bias and unable to cope with both signal polarities
 - We will see that the transconductor allows us to charge the 'resistance' electronically
 - It also gives us a way to get a linear discharge, which can be useful

• Start again with an ideal amplifier with gain $-A_0 \sim 100$, no detector capacitance and $C_f = 50$ fF.

- Add two sources ipulse (one shown) which deliver charges of +Q_{in} and – Q_{in} (e.g. ± 1fC) so that we get positive and negative output pulses, offset by 1µs
- Chose R_f such that we discharge in roughly 200ns
- How does the time constant change when you vary the input charge from 1 fC to 10 fC ?

- Now use an NMOS N_18_MM of W/L = 500nm/200nm instead of the feedback resistor
 - You may want to duplicate the circuit in your schematic so that you keep the resistive feedback as a reference
- Us Q_{in} = 1fC. Find the gate voltage such that you get roughly the same 200ns time constant.
- Does this work for both polarities? Exactly?
- Increase the charge to 20fC. What happens? Explain! This is tricky! Hint: What is V_{GS} of the feedback MOS?
- Go back to 1fC. Change the gate voltage by 50mV (this can easily happen from run to run). How much does the time constant change?
- The gate voltage sensitivity can be reduced by making the MOS very long (100µm or so). Why?

UNIVERSITÄT HEIDELBERG

USING A TRANSCONDOCTOR FOR DC FEEDBACK (THIS IS AN UNUSUAL SOLUTION...)

The Transconductor

Our Transconductor is shown here

• Explanation on next page

AABB: DC Feedback

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Transconductor

- It is a differential amplifier with PMOS inputs vp and vn
 - Input MOS are long: W/L = 1u/2u
- The ('tail') bias current comes from Mpsource, with gate bias voltage V_{pbias}.
- An identical PMOS M9 provides a current output i_{bias}. By connecting i_{bias} to V_{pbias} (outside), we generate a PMOS mirror from which we can pull the bias current to ground. (This 'trick' avoids a PMOS at the top level schematic.)
- The currents on the left and the right are mirrored and added at the output.
 NOTE: We will connect the output to a 'fixed' voltage V_{out}.
- In an ideal case, $I_{out}=0$ if $v_p == v_n$.
- The maximal / minimal output currents should be I_{bias}. (if all mirrors are 1:1)

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Simulating the Transconductor

- Use i_{bias} = 100nA (small!) and fix V_{out} = 0.9V.
- Set vp to 0.9V and vary v_n from v_p-0.5V ... v_p+0.5V (DC sweep!)
- Observe I_{out}. What is the transonductance?
- In which (input) dynamic range does the circuit work?

Changing i_{bias}

- Change i_{bias} (1nA...1uA)
- How does the transconductance change ?
- How does the dynamic range change ?

We see that we can easily get small transconductances, but for small transconductances, the dynamic range is small...

Difficult: Try i_{bias} = 10uA. Why does the circuit stop working?

DC input range

- We want to see for which input voltages the circuit works.
- Vary v_p from -400mV to 900mV (and sweep v_n around v_p)
 - When does the circuit stop working?
 - Why?

Hint: What is the saturation condition for the differential PMOS pair?

- Replace the lower NMOS mirrors by N_LV_18_MM. These transistors have lower threshold.
 - Difficult: Why does this help?
- We now have a circuit which works well down to 0 at the input ¹/₂
- Can the *output* go to 0 as well?

Using the Transconductor in the Charge Amplifier

- Now use the transconductor in the feedback of the ideal CSA (implemented with a vcvs)
 - (remember how we used a vccs on sheet 1!)
- Connect vp and vn to the input and the output of the CSA
 - This will force $v_p = v_n$
- As our transconductor cannot drive into ground, use a dc voltage source to shift its output level to 900mV
 - We will not need this later with a real amplifier...

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

- Use Q_{in} = 1fC and I_{bias} = 50nA or so.
- If you did everything correctly, it should work, in principle:

- Vary I_{bias} and observe how the time constant changes.
- We have a current controlled discharge time !

- Use 50nA again.
- Increase the input charge from 1 fC to 10 fC and to 30fC
- How do the pulse shapes change?
- Why?
- What happens if you double I_{bias}?
- Is this what you expect ?
- The constant current discharge can be useful, because the width of the signal becomes proportional to the input charge.
 - Try this: I_{bias}=50nA, Q_{in} = 10,20,30 fQ

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Optional: Back to RC Shape

- The 'saturation' occurs quite early because the linear input range of our transconductor is small for small I_{bias}
 - For experts: The input diff. pair is in weak inversion
- If we increase I_{bias}, the range gets better, BUT the transconductance increases and we get a too fast discharge. (input pair gets into strong inversion)
- A trick can solve this:
 - Use a 'large' I_{bias} current in the differential pair
 - Use a current mirror in the output branch to divide this current down to 1/8 or less

 Try this in a 2nd transconductor. Compare in a dc simulation to your first version. Is the input range wider for same transconductance? (You must use different I_{bias} currents!)

- Finally, use a NMOS gain stage instead of the vcvs in the main CSA.
 - For instance W/L = 5u/500n biased at 5uA
- The input will now settle to a voltage around the NMOS threshold
- The transconductor output drives into that voltage so that you do bot need the 900mV shift and more.